Topologie
Répondre à la discussion
Affichage des résultats 1 à 2 sur 2

Topologie



  1. #1
    invitecbade190

    Topologie


    ------

    Bonjour :
    Soient et deux espaces topologiques quelconques.
    Soit une application.
    Définition :
    Soit .
    est continue sur si et seulement si : .
    est continue sur si est continue en chacun des points de .
    Question:
    On cherche à montrer à l'aide de la definition çi-dessus que :
    est continue sur si et seulement si ouvert de est un ouvert de .
    Aidez moi, je ne sais pas par quoi commencer .. !
    Meric d'avance !!

    -----

  2. #2
    invite35452583

    Re : Toplogie

    Bonjour,
    2ème définition=>1ère définition
    il suffit d'écrire qu'un voisinage de x0 contient un ouvert de x0 puis appliquer la 2mre définition
    1ère définition=>2ème définition
    pour l'essentiel il faut se rappeler que pour une sous-partie être ouvert équivaut à être un voisingage pour chacun de ses points.

Discussions similaires

  1. topologie
    Par invite572ebd1a dans le forum Mathématiques du supérieur
    Réponses: 26
    Dernier message: 15/09/2007, 11h59
  2. Topologie et topologie metrique induite
    Par invite65d14129 dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 17/04/2007, 12h09
  3. topologie
    Par invitee75a2d43 dans le forum Mathématiques du supérieur
    Réponses: 18
    Dernier message: 21/11/2005, 20h35
  4. [MP] Topologie...
    Par invite3f53d719 dans le forum Mathématiques du supérieur
    Réponses: 7
    Dernier message: 29/10/2005, 10h41
  5. topologie
    Par invitec12706a7 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 16/02/2004, 18h45