Répondre à la discussion
Affichage des résultats 1 à 12 sur 12

Système de 4 équations à 4 inconnues



  1. #1
    Diator

    Système de 4 équations à 4 inconnues


    ------

    Bonjour,

    J'aimerais résoudre le système suivant mais je n'y parviens pas, auriez-vous une astuce pour commencer?



    Les inconnues sont : x, y, z et r

    Merci d'avance

    @+

    -----

  2. Publicité
  3. #2
    rvz

    Re : Système de 4 équations à 4 inconnues

    Salut,

    Tu peux d'abord essayer de faire comme si r était connu. Sauf erreur, ça va te permettre de déterminer x, y et z en bidouillant un peu les équations. Après, tu n'as qu'à vérifier que r peut vérifier les 4 équations en même temps, et tu obtiendras des Conditions Nécessaires et suffisantes de solubilité du système, ainsi que la (ou les) solution(s) correspondantes.

    __
    rvz

  4. #3
    ericcc

    Re : Système de 4 équations à 4 inconnues

    Pas mieux !

    En fait le système se simplifie grandement car tout les termes carrés disparaissent quand on développe les premiers membres.

  5. #4
    Diator

    Re : Système de 4 équations à 4 inconnues

    Salut,

    Merci de ton aide, on supposant que l'on connaisse r voilà ce que je trouve :



    Après, je ne vois pas bien comment faire pour obtenir r. En remplacant x, y et z par les valeurs précédentes dans la première equation du système (x²+y²+z²=r²)? J'ai essayé mais ca me donne une équation bien compliquée.


    @+

  6. #5
    rvz

    Re : Système de 4 équations à 4 inconnues

    C'est normal.

    L'intersection de 4 cercles est en général vide.

    __
    rvz

  7. A voir en vidéo sur Futura
  8. #6
    rvz

    Re : Système de 4 équations à 4 inconnues

    Note : L'équation en r n'est que quadratique. Autant dire que ça n'a rien de monstrueux, même s'il faut bien reconnaître que les coefficients sont degueu.

    __
    rvz

  9. Publicité
  10. #7
    Diator

    Re : Système de 4 équations à 4 inconnues

    Il s'agit ici de l'intersection de 4 sphères, ca devrait être un point.

  11. #8
    DSCH

    Re : Système de 4 équations à 4 inconnues

    Citation Envoyé par Diator Voir le message
    Il s'agit ici de l'intersection de 4 sphères, ca devrait être un point.
    Génériquement, l'intersection de quatre sphères est vide (quatre contraintes dans un espace à trois degrés de liberté). C'est celle de trois sphères qui est un point (enfin, en pratique, plutôt une paire de points ; en tout cas quelque chose de dimension nulle).

    Maintenant, si on a le choix des rayons, on peut en effet s'arranger pour être dans une situation dégénérée où l'intersection des quatre sphères n'est pas vide…
    Dernière modification par DSCH ; 14/11/2007 à 20h18. Motif: précision
    1 729 = 1^3 + 12^3 = 9^3 + 10^3

  12. #9
    Diator

    Re : Système de 4 équations à 4 inconnues

    Dans mon cas, comment trouver r à partir des x, y et z ?

    Merci

    @+

  13. #10
    DSCH

    Re : Système de 4 équations à 4 inconnues

    Les trois formules pour , et que tu as trouvées dans le message #4 de ce fil sont des conditions nécessaires. À partir de ces formules, tu peux calculer la somme , et en écrivant que celle-ci doit être égale à , cela te donne une équation de degré deux (sauf cas dégénéré) d'inconnue .

    Tu peux d'ailleurs faire la même chose en calculant , etc.

    J'ai tout de même l'impression que toutes ces conditions nécessaires risquent d'être incompatibles si , , sont quelconques et imposés ; ou alors le problème admet des symétries qui m'échappent (je n'ai eu le temps de regarder en détail)… De toute façon, sauf si des simplifications m'échappent, il me semble pénible de faire les calculs sans l'assistance d'un logiciel de calcul formel.
    1 729 = 1^3 + 12^3 = 9^3 + 10^3

  14. #11
    gillesblanc

    Re : Système de 4 équations à 4 inconnues

    Citation Envoyé par Diator Voir le message
    Bonjour,

    J'aimerais résoudre le système suivant mais je n'y parviens pas, auriez-vous une astuce pour commencer?



    Les inconnues sont : x, y, z et r

    Merci d'avance

    @+
    bonjour j'ai trouve ca fait 2 semaines que je cherche pas un logiciel trouve systeme lineaire a 4 inconnues et 4 equations j'ai lu votre forum j'ai suppose w+1 et ca marche
    3x=2y-w=0
    2x+z+2w=5
    x+2y -z=-2
    2x-y+z+w=2 avec w=1 supposition j'ai trouve en 5 minutes x=1,y=2,z=5,w=1

  15. #12
    gillesblanc

    Re : Système de 4 équations à 4 inconnues

    x+3y-2x-w=9
    4x+y+z+2w=2
    -3x-y+z-w=-5

    x-y-3z-2w=2

    supposons w=1 on trouve x=0,y=2,z=-2,w=1 merci

  16. Publicité

Sur le même thème :

Discussions similaires

  1. système de 4 équations à 4 inconnues
    Par kana_flower dans le forum Mathématiques du collège et du lycée
    Réponses: 6
    Dernier message: 20/09/2007, 21h40
  2. Système trois équations trois inconnues
    Par kNz dans le forum Mathématiques du collège et du lycée
    Réponses: 10
    Dernier message: 22/07/2006, 23h51
  3. Disussion d'un système de trois équations à 3 inconnues
    Par alias_sg1 dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 13/03/2006, 23h46
  4. Discussion d'un système de trois équations à 3 inconnues
    Par alias_sg1 dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 12/03/2006, 15h07
  5. Système de 4 équations , 3 inconnues
    Par psebcopathe dans le forum Mathématiques du supérieur
    Réponses: 8
    Dernier message: 07/02/2004, 11h18