Répondre à la discussion
Affichage des résultats 1 à 13 sur 13

Série 1/n diverge



  1. #1
    Rapaccione

    Série 1/n diverge


    ------

    Bonsoir,
    quelqu'un saurait m'aider à comprendre pourquoi la série diverge? Pour moi, la somme va s'accumuler autour de et donc converge.
    Merci pour votre aide

    -----

  2. Publicité
  3. #2
    op-bak

    Re : série 1/n diverge

    A ne pas confondre la limite de 1/n en l'infini qui converge, et la somme de terme, certe plus petit les uns après les autres, mais somme de réèls positif quand même.
    En espérant t'avoir aidé

  4. #3
    invite52487760

    Re : série 1/n diverge

    Salut :
    regarde ici, en bas de la page :
    http://fr.wikibooks.org/wiki/Analyse:S%C3%A9ries

  5. #4
    Rapaccione

    Re : série 1/n diverge

    Merci pour vos réponses.
    Mais pourquoi diverge?

  6. #5
    Ksilver

    Re : série 1/n diverge

    la somme des 1/n² converge, elle ne diverge pas.


    apres pourquoi la somme des 1/n diverge et la somme des 1/n² converge la j'ai pas d'explicaton rationelle à te donner mis a part que la somme des 1/n^s converge des que s>1 (comme l'intégral de 1/x^s entre 1 et l'infinit...)

  7. A voir en vidéo sur Futura
  8. #6
    Antho07

    Re : série 1/n diverge

    LA somme des 1/n² converge (la limite est pi²/6 ).

    Ce sont des series de Riemann.

    On peut utiliser les comparaisons avec les integrales impropres pour demontrer leur convergences ou leurs divergences

  9. Publicité
  10. #7
    Ledescat

    Re : série 1/n diverge

    Citation Envoyé par Rapaccione Voir le message
    Merci pour vos réponses.
    Mais pourquoi diverge?
    Comme l'a dit ksilver, celle-ci ne diverge pas.

    Avec quelques petits dessins sur la courbe de f: x->1/x, on trouve facilement:



    ln divergeant vers l'infini, la somme de gauche fait de même.


    (en résumé, 1/k correspond à l'aire d'un rectangle de base 1 et de hauteur f(k)=1/k, ce qui amène à ce résultat avec un joli dessin).
    Cogito ergo sum.

  11. #8
    Rapaccione

    Re : série 1/n diverge

    Ah oui! Je suis désolé, je voulais dire "converge"
    Merci à vous tous!

  12. #9
    Gwyddon

    Re : série 1/n diverge

    Un truc rapide (et sans faire appel aux intégrales) pour voir que la série harmonique (celle des 1/n) diverge : calculer S2n-Sn.

    En effet si la série harmonique convergeait (disons vers un réel a), Sn et S2n convergeraient vers a, donc leur différence devrait converger vers zéro.

    Or


    donc pour tout n, donc la différence ne converge pas vers zéro ce qui assure la divergence de la série vers l'infini (puisque croissante et ne convergent pas vers un réel)
    Dernière modification par Gwyddon ; 17/12/2007 à 11h01. Motif: balises
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  13. #10
    MiMoiMolette

    Re : série 1/n diverge

    Salut,

    Citation Envoyé par Rapaccione Voir le message
    Bonsoir,
    quelqu'un saurait m'aider à comprendre pourquoi la série diverge? Pour moi, la somme va s'accumuler autour de et donc converge.
    Merci pour votre aide
    Je ne sais pas si ça va servir, mais peut-être est-ce que ça évitera des conclusions hâtives :

    converge

    Et c'est une implication, pas une réciproque. Ce qui «prouve» qu'une suite peut tendre vers 0, sans que sa série associée converge.
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

  14. #11
    Rapaccione

    Re : série 1/n diverge

    Merci à vous tous!

  15. #12
    Imane kh

    Lightbulb Re : Série 1/n diverge

    Si une série de terme général {\displaystyle u_{n}} *** Lien sur serveur externe *** converge, alors {\displaystyle u_{n}} *** Lien sur serveur externe ***a pour limite 0 quand n tend vers l'infini !!!
    C'est une condition nécessaire mais non suffisante *** Lien sur serveur externe ***
    Dernière modification par Médiat ; 25/11/2017 à 07h29.

  16. Publicité
  17. #13
    albanxiii

    Re : Série 1/n diverge

    Les méfaits du copier-coller d'un truc pompé sur un autre site...
    Not only is it not right, it's not even wrong!

Sur le même thème :

Discussions similaires

  1. série et DL
    Par mattlastar dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 11/11/2007, 20h37
  2. Série convergente -> série abst convergente
    Par MiMoiMolette dans le forum Mathématiques du supérieur
    Réponses: 10
    Dernier message: 30/09/2007, 19h46
  3. Démo : ( |sin (n) / sin (n+1)| ) diverge
    Par prgasp77 dans le forum Mathématiques du supérieur
    Réponses: 11
    Dernier message: 10/05/2007, 23h25
  4. série
    Par carl159 dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 28/09/2006, 18h39
  5. cette solution de serie/parallele/serie fonctionne-t-elle
    Par ABN84 dans le forum Électronique
    Réponses: 17
    Dernier message: 19/08/2005, 15h29