Restriction et symétrie
Répondre à la discussion
Affichage des résultats 1 à 11 sur 11

Restriction et symétrie



  1. #1
    invite1eae1089

    Restriction et symétrie


    ------

    Salut tout le monde,
    alors j'ai un petit problème d'algèbre que j'aimerais bien vous exposer ...
    alors j'ai une application phi qui va de Mn(R)xMn(R) dans R et qui à A et B deux matrices associe trace(AB).
    On me demande de montre que cette forme est bilinéaire symétrique (cette partie j'ai réussi)

    Puis on me demande de montrer que la restriction de phi a Sn(R)xSn(R) est définie positive(où Sn(R) est l'ensemble des matrices symétriques). Puis l'orthogonal de Sn(R)? puis la signature de phi?

    Et là je ne sais pas du tout quoi faire jep eux avoir un peu d'aide ???

    Merci d'avance

    -----

  2. #2
    invite14e03d2a

    Re : Restriction et symétrie

    Salut,

    Si A est une matrice symétrique , tu peux calculer explicitement les éléments diagonaux de A² en fonction des éléments et voir qu'il ont une expression sympa. Cela devrait t'aider à continuer ton problème.

    Pour la signature, tu dois surement avoir vu que Mn(R) est somme directe de Sn(R) et de An(R) (ensemble des matrices antisymétriques). Sinon, il va falloir le redémontrer.

    J'espère t'avoir donné quelques pistes utiles.

  3. #3
    invite1eae1089

    Re : Restriction et symétrie

    ouais j'imagine que vu que A egal a sa transposée alors je calcule trace(Axtransposée de A) donc trace(A²) = (somme i = 1...n (somme k = 1..n de Aik²)) donc cest une somme de carres donc cest positif ... Mais je ne vois pas comment montrer que c'est definie positif pour trace(AB)...
    Peux tu m'aider ??

    (Au passage en quoi connaitre l'égalite que je ne connais pas et quje je ne sais pas démontre... va m'aider pour la signature ????)

    Merci d'avance encore

  4. #4
    invite1eae1089

    Re : Restriction et symétrie

    j'ai réussi a demontrer pour le definie positif ... J'ai aussi reussi a demontrer que c'etait non degeneree donc du coup la dimension de l'orthogonal c'est n(n-1)/2 qui est la dim de An(R) mais l'argument sur les dimensions je ne pense pas qu'il suffise... Comment je peux le démontrer ??
    et comment faire pour la signature(j'au reussi a demontrer que An(R) et Sn(R) etait somme directe et donnait Mn(R)... tu peux me filer un dernier coup de main ??? ou quelqu'un d'autre ??? svp

    Merci d'avance

  5. A voir en vidéo sur Futura
  6. #5
    invited776e97c

    Re : Restriction et symétrie

    Utilise ton produit scalaire pour montrer l'orthogonalité , par contre j'ai jamais entendu parler de signature.

  7. #6
    invite1eae1089

    Re : Restriction et symétrie

    oui mais pour montrer l'orthogonalité je veux bien utilise le produit scalaire mais je pense qu'ici ca ne m'avance pas beaucoup... lol ou alors je ne vois pas comment faire ...une autre idee ?????

    Merci d'avance

  8. #7
    invited776e97c

    Re : Restriction et symétrie

    il est facile de voir qu'on a trAB=-trAB avec A appartenant a An(R) et B appartenant à Sn(R) et trAB=0

  9. #8
    invite1eae1089

    Re : Restriction et symétrie

    j'ai du mal a voir comment c'est facile à voir .. ..

  10. #9
    invited776e97c

    Re : Restriction et symétrie

    Je note T(A): transpose de A .
    trAB=-trT(A)B=-trT(A)T(B)=-trT(BA)=-tr(BA)=-tr(AB)

    Voila

  11. #10
    invite1eae1089

    Re : Restriction et symétrie

    ouais d'accord et de ce fait j'en déduis quoi ^^. ?

  12. #11
    invited776e97c

    Re : Restriction et symétrie

    Ben l'orthogonalite puisque ta justifier que toute matrice de An(R) appartient à l'orthogonale de Sn(R) donc An(R) inclus dans orthogonale de Sn(R) et tu complete par un argument de dimension.

Discussions similaires

  1. [Biologie Moléculaire] La carte de restriction
    Par invitee7d21745 dans le forum Biologie
    Réponses: 2
    Dernier message: 21/10/2008, 23h01
  2. [Biologie Moléculaire] Site de restriction
    Par invite9e13aaab dans le forum Biologie
    Réponses: 9
    Dernier message: 29/04/2008, 16h51
  3. [Biologie Moléculaire] enzyme de restriction
    Par invite263e1345 dans le forum Biologie
    Réponses: 2
    Dernier message: 02/01/2008, 19h54
  4. [Biologie Cellulaire] enzyme de restriction
    Par invite3f08311e dans le forum Biologie
    Réponses: 12
    Dernier message: 27/12/2007, 22h20
  5. Enzyme de restriction
    Par invite58d2d622 dans le forum Biologie
    Réponses: 6
    Dernier message: 07/02/2005, 21h26