[Intégrale]Etude d'intégrabilité
Répondre à la discussion
Affichage des résultats 1 à 3 sur 3

[Intégrale]Etude d'intégrabilité



  1. #1
    invitea83062ce

    [Intégrale]Etude d'intégrabilité


    ------

    Bonjour à tous,

    Voici mon problème qui me tracasse depuis quelques jours:

    Intégrabilité sur [0;+Infinity[ de :

    1/(1+exp(u)*|sin(u)|)

    Je commence tout d' abord par utilisé la périodicité du sinus ainsi que le fait que l'on prend sa valeur absolue.

    Avec la relation de Chasles je me retrouve avec une somme de k variant de 0 a +infinie d'intégrale variant de 0 à Pi de :

    1/[1+exp(k*Pi)*exp(u)*sin(u)]

    Je pose alors µ=exp(-k*Pi) et j'ai donc :

    1/[1+exp(k*Pi)*exp(u)*sin(u)] = µ/[µ+sin(u)]

    je n'ai "plus qu'a" l'intégrer sur [0,Pi]

    Le problème c'est que à partir de ce moment je ne trouve plus vraiment de méthode pour montrer que cette fonction est intégrable ou pas.

    J'ai bien essayer la sacro sainte règle de bioche en posant v=tan(u/2)
    Mais alors dans les bornes de l'intégrale, sauf erreur de ma part, je fais apparaitre un tan(Pi/2) :s

    Dans un second temps jai voulu encore majorée cette fonction par une constante indépendante de k et étudier la convergence de la série mais là encore je n'aboutis pas.

    Si quelqu'un a une idée, je suis preneur
    Merci

    -----

  2. #2
    invite3240c37d

    Re : [Intégrale]Etude d'intégrabilité

    .
    Mais .
    Donc
    Je te laisse conclure pour la convergence de

  3. #3
    invitea83062ce

    Re : [Intégrale]Etude d'intégrabilité

    Merci beaucoup !
    Je vois que je raisonnais mal...

Discussions similaires

  1. Besoin d'un petit coup de pouce...
    Par inviteef6f95b9 dans le forum Santé et médecine générale
    Réponses: 2
    Dernier message: 02/11/2007, 18h39
  2. bonjour à tous! besoin d'un petit coup de pouce...fonction
    Par invitebe1531d1 dans le forum Mathématiques du supérieur
    Réponses: 10
    Dernier message: 25/03/2006, 14h46
  3. besoin d'un petit coup de pouce!!!
    Par invitebe1531d1 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 10/03/2006, 22h45
  4. j'ai besoin d'un petit coup de pouce s'il vous plaît!
    Par invite885b09b2 dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 16/10/2004, 20h24