Salut, j’ai un petit DM pour demain, vous pouvez m’aider svp, voici le problème :
On considère un parallélogramme ABCD, j est le milieu de [AC], I et I’ partagent le segment [AB] et enfin K est le quatrième sommet du parallélogramme IAJK.
1° Exprimer comme barycentre de A, B et C chacun des points I, J, K et D.
2° Montrer que les droites (BJ) (CI) et (DK) sont concourantes en un point que l’on précisera et que l’on notera M. (voir figure)
3° Après avoir exprimé I’ comme barycentre des points de A et B, montrer que les points I’, M, K et D sont alignés.
Voici mes réponses :
1°
ABCD parallélogramme (3)
J milieu de [AC] (1)
I et I’ partagent [AB] en B (2)
IAJK parallélogramme (4)
I, J, K et D barycentre de A, B et C.
(1) J est barycentre de (A ; 1) (B ; 1). (J est l’isobarycentre des point A et B.
(2) I est barycentre de (A ; 1) (B ; 2) car :
AI = 2/3AB
3AI = 2AB
3AI = 2AI + 2 IB
-IA – 2IB = 0
<-> IA + 2IB = 0
(AI… sont des vecteurs).
(3) ABCD parallélogramme <-> DC + DB = DA
<-> DC + DB – DA = 0
<-> D barycentre de (C ; 1) (B ; 1) (A ; -1)
(4) IAJK parallélogramme <-> KI + KJ = KA
<-> KI + KJ – KA = 0
<-> K barycentre de (I ; 1) ( J ; 1) ( A : -1)
2° Montrons que M est le barycentre de :
- B et J
- C et I
- D et K
C’est là que je bloque, je ne sais plus quoi faire ensuite.
3° Soit I’ barycentre des points (A ; @) (B ; €) avec @ + € différent de 0.
Montrons que I’, M, K et D sont alignés.
On sait déjà que D, K et M sont alignés puisque la droite (DK) coupe [CI] ou [JB] en M.
La aussi je ne sais plus qu’est ce qu’il faut faire.
Vous pouvez m’aidez svp !
Merci d’avance !
-----