Répondre à la discussion
Affichage des résultats 1 à 7 sur 7

théorie des groupes



  1. #1
    catmen

    théorie des groupes


    ------

    Soit G un groupe fini. On définit . Supposons que n et |G| sont copremiers. On veut montrer que

    Il est facile de montrer que en utilisant le fait qu'il existe des entiers a et b tel que an + b|G| = 1. Mais je ne suis pas capable de montrer qu'on a l'égualité.

    Merci de votre aide.

    -----

  2. Publicité
  3. #2
    martini_bird

    Re : théorie des groupes

    Salut,

    une démonstration par l'absurde me semble plus simple: s'il existait deux éléments distincts h1 et h2 tels que h1n=h2n=g, que peut-on dire de h1h2-1?

    Cordialement.

  4. #3
    catmen

    Re : théorie des groupes

    Désolé de vous déranger encore, mais je ne vois toujours pas ma solution. J'ai l'impression que je suis supposé voir que mais je ne vois toujours pas pourquoi.

    merci

  5. #4
    martini_bird

    Re : théorie des groupes

    Salut,

    comme h1 est distinct de h2, n>1. Or celà peut-il être compatible avec le fait que n et |G| sont premiers entre eux?

  6. A voir en vidéo sur Futura
  7. #5
    Gwyddon

    Re : théorie des groupes

    salut matthias,
    je trouve ce petit exercice très sympathique et j'ai donc décidé de le faire. Je comprend ta démarche, mais il y a un hic : pour que ne faut-il pas que l'on suppose G abélien ? Parce qu'avec cette hypothèse supplémentaire, pas de problème. Mais le résultat demandé doit être vrai sans ça, et je ne vois pas comment prouver le résultat ci-dessus, sans supposer G abélien

    @+
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  8. #6
    martini_bird

    Re : théorie des groupes

    Salut,

    tu as raison Julien: j'ai supposé que h1 et h2 commutent.

    Reprenons: nous avons deux éléments distincts h1 et h2 tels que h1n =h2n(=g).

    Puisque n et |G| sont premiers entre eux, il existe deux entiers a et b tels que an=1-b|G|. Ainsi: h1an =h2an et h11-b|G| =h21-b|G|. Or l'ordre d'un élément divise |G|, donc (h1-1)b|G| =(h2-1)b|G|=e et finalement la contradiction h1=h2.

    J'ai bon?

  9. Publicité
  10. #7
    Gwyddon

    Re : théorie des groupes

    yes !

    Super comme démo
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

Discussions similaires

  1. théorie des groupes
    Par ixi dans le forum Lectures scientifiques
    Réponses: 20
    Dernier message: 18/10/2013, 17h29
  2. Théorie des groupes
    Par kikeo dans le forum Chimie
    Réponses: 1
    Dernier message: 08/05/2007, 17h10
  3. Théorie des groupes
    Par Mataka dans le forum Mathématiques du supérieur
    Réponses: 9
    Dernier message: 02/04/2007, 07h20
  4. théorie des groupes
    Par pyaar dans le forum Chimie
    Réponses: 3
    Dernier message: 28/03/2006, 18h43
  5. Théorie des groupes
    Par francois3375 dans le forum Chimie
    Réponses: 0
    Dernier message: 23/02/2006, 19h43