intégrale a paramétre
Répondre à la discussion
Affichage des résultats 1 à 11 sur 11

intégrale a paramétre



  1. #1
    invite7fc34639

    intégrale a paramétre


    ------

    Bonjout à tous
    voilà mon problème:
    j'ai une fonction F(x,y)= int[(ln(1+xt)/(1+t²),t,0,y]
    (j'intégre en t entre 0 et y)

    le calcule des dérivées me donne :
    dF/dy = ln(1+xy)/(1+y²) et
    dF/dx = int [ ((1+t)/(1+xt))*(1/(1+t²));t,0,y)

    bon ensuite et c'est là que mon probléme commence, je dois en déduire que
    f(x)=int[(ln(1+xt)/(1+t²),t,0,x] (ie : f(x) = F(x,x))= 1/2(arctan(x)*ln(1+x²)

    pas de problème je calcule f'(x) =dF/dx + dF/dy
    Calcul fais je trouve f ' = -ln(1+x²)/(2(1+x²)) + x*arctan x/(1+x²)
    (sauf erreur de calcul de ma part)

    voilà alors comment montrer que f =1/2(arctan(x)*ln(1+x²)
    J'ai pensé a intégrer f' , je me rapproche du résultat (en intégrant par partie) , mais pas moyen de trouver le bon résultat (je tourne en rond en intégrant par partie)

    merci en espérant une réponse

    -----

  2. #2
    invitea77054e9

    Re : intégrale a paramétre

    Salut,

    Je ne comprend pas tout dans ton énoncé,
    à quoi est égale f dans les hypothèses?

    De plus, dF/dx = int [ (t/(1+xt))*(1/(1+t²));t,0,y) ] et non dF/dx = int [ ((1+t)/(1+xt))*(1/(1+t²));t,0,y) ] je crois.

    f(x)=int[(ln(1+xt)/(1+t²),t,0,x] donne f'(x)= ln(1+x²)/(1+x²)+ int [ (t/(1+xt))*(1/(1+t²));t,0,x) ] me semble-t-il.

    En attendant plus de précisions sur l'énoncé .

  3. #3
    invite7fc34639

    Re : intégrale a paramétre

    oui en effet j'ai fais une erreur de calcul
    je revois ca et te tien au courrant, et si je bug j'expliquerai mieu
    merci de ta réponse

  4. #4
    invite7fc34639

    Re : intégrale a paramétre

    re
    à mince en fait je me suis tromper en écrivant,
    donc oui je trouve le meme f ' que toi
    soit f ' (x) = ln(1+x²)/(1+x²)+ int [ (t/(1+xt))*(1/(1+t²));t,0,x) ]

    donc comme je l'ai écrit f(x)=int[(ln(1+xt)/(1+t²),t,0,x]

    tu remarquera que f(x) = F(x,x) (on admet que F est bien définie et de classe C1 sur R*²)

    tu comme tu l'a dit f ' (x) = ln(1+x²)/(1+x²)+ int [ (t/(1+xt))*(1/(1+t²));t,0,x) ]
    l'intégrale se calculant (décomposition en éléments simples...) bref je touve (calcul fait)
    f'(x) = -ln(1+x²)/(2(1+x²)) + x*arctan x/(1+x²)

    et de la je doit montrer que f(x) = F(x,x))= 1/2(arctan(x)*ln(1+x²)

    bon ma premiére idée c'est d'intégrer f'(x) mais ca bloque...
    merci

  5. A voir en vidéo sur Futura
  6. #5
    inviteab2b41c6

    Re : intégrale a paramétre

    Et si tu dérivais arctan(x)*ln(1+x^2), ca ne serait pas une bonne idée?
    Tu vois qu'en 0 ca vaut 0, tout comme f, est le tour est joué...

  7. #6
    invite7fc34639

    Re : intégrale a paramétre

    merci de ta réponse
    mais faut utiliser la dérivé
    c'est le but de l'exo (érreur de ma part j'ai pas précisé)
    en fait j'ai la fonction F(x,y)
    sur laquelle je doit calculer ses dérivés partielles et de làje doit en déduire que
    f(x) = F(x,x) = 1/2(arctan(x)*ln(1+x²)

    donc je pense que ca doit etre plus compliqué que ta méthode, mais merci qu'en même de ta réponse

  8. #7
    invitec314d025

    Re : intégrale a paramétre

    Du moment que ta démonstration est rigoureuse, j'aurais tendance à dire que tu as tous les droits, et surtout celui de donner la solution la plus simple.

  9. #8
    invite7fc34639

    Re : intégrale a paramétre

    merci de ta réponse
    mais c'est pas trés pédagogique ca

  10. #9
    invitea77054e9

    Re : intégrale a paramétre

    Je suis désolé, ça fait 1 heure que je cherche, et tjs rien à l'horizon . Il me semble que le calcul d'une primitive de f'(x) est assez rude (je ne m'avancerais pas en disant que c'est quasi-impossible avec les techniques de base de primitivation, meme si c'est mon sentiment).

    Le "en déduire" de ton énoncé me laisse croire qu'il s'agit simplement de vérifier que la dérivée de 1/2(arctan(x)*ln(1+x²) est bien f'(x) puis d'identifier, sinon on t'aurait pas donné directement le résultat de f(x).

    Bref je vais encore tenter ma chance, mais j'y crois pas trop !

  11. #10
    inviteab2b41c6

    Re : intégrale a paramétre

    Il me semble que si tu connais 2fonctions ainsi que leur dérivées, je ne vois pas en quoi le fait de dire qu'elles ont même dérivée et donc sont égales à une constante près serait faux ou non pédagogique, d'autant plus que si on voulait te demander de calculer réellement f, on te l'aurait pas donnée...

    Sur ce,
    A+

  12. #11
    invite7fc34639

    Re : intégrale a paramétre

    merci de vos réponse
    vous avez sans doute raison
    je vais voir tout ca et merci encore

Discussions similaires

  1. Valeur d'une intégrale si un paramètre tend vers l'infini
    Par invite8ef93ceb dans le forum Mathématiques du supérieur
    Réponses: 13
    Dernier message: 05/10/2007, 23h34
  2. intégrabilité d'une intégrale à paramètre
    Par invite13e43e70 dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 22/06/2007, 14h24
  3. Dérivation d'une intégrale à paramètre
    Par invite6be2c7d9 dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 25/06/2006, 19h44
  4. integrale à parametre
    Par invite03934d84 dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 30/04/2006, 16h05
  5. intégrale mathématique vs intégrale physique
    Par invitec3f4db3a dans le forum Mathématiques du supérieur
    Réponses: 12
    Dernier message: 17/04/2006, 20h35