Répondre à la discussion
Affichage des résultats 1 à 17 sur 17

dérivée (d'une fonction puissance)



  1. #1
    charlène

    dérivée (d'une fonction puissance)


    ------

    Bonjour !

    Je vois que vous êtes des spécialistes est ce que quelqu'un pourrait m'expliquer comment dérivée la fonction 40n^(1/2) ?

    Sachant que le résultat est 20n^(-1/2)

    -----

  2. Publicité
  3. #2
    matthias

    Re : dérivée

    Citation Envoyé par charlène
    Bonjour !

    Je vois que vous êtes des spécialistes est ce que quelqu'un pourrait m'expliquer comment dérivée la fonction 40n^(1/2) ?

    Sachant que le résultat est 20n^(-1/2)
    Qu'on soit d'accord, ici n est un réel (on ne dérive pas les suites)
    on prendra plutôt la fonction:

    elle se dérive comme toutes les fonctions en

  4. #3
    martini_bird

    Re : dérivée

    Salut,

    héhé, la (petite) colle du week-end: comment démontre-t-on que la dérivée de x->xa (où a est est réel) est x->axa-1 from scratch (i.e. en utilisant la définition de la dérivée)?

  5. #4
    Brikkhe

    Re : dérivée

    Lut,

    40x1/2 = racine de 40x donc si on derive avec la formule de dérivation des racines, on devrait trouver pareil, n'est-ce pas?

    @pluche!

  6. #5
    charlène

    Re : dérivée

    merci pour la réponse !
    j'ai compris mais pour le problème posé ça va être plus dur

  7. A voir en vidéo sur Futura
  8. #6
    Romain-des-Bois

    Re : dérivée

    Citation Envoyé par marcelito
    Lut,

    40x1/2 = racine de 40x

    @pluche!
    heu, tu es sûr ?

    Ca serait pas plutôt ... 40x1/2 = 40 racine de x

  9. Publicité
  10. #7
    matthias

    Re : dérivée

    Citation Envoyé par martini_bird
    Salut,

    héhé, la (petite) colle du week-end: comment démontre-t-on que la dérivée de x->xa (où a est est réel) est x->axa-1 from scratch (i.e. en utilisant la définition de la dérivée)?
    Moi je suis feignant, alors je le fait avec

  11. #8
    Romain-des-Bois

    Re : dérivée

    Citation Envoyé par charlène
    merci pour la réponse !
    j'ai compris mais pour le problème posé ça va être plus dur
    Mais non !!!

    f(n) = 40.n^1/2

    ici a=40 et b=1/2
    f'(n) = ab.n^(1/2) - 1
    = 40.(1/2).n^(-1/2)
    = 20.n^(-1/2) C.Q.F.D. !

    et c'est fini !

  12. #9
    matthias

    Re : dérivée (d'une fonction puissance)

    Je crois qu'elle parlait du problème posé par Martini_bird ...

  13. #10
    Romain-des-Bois

    Re : dérivée (d'une fonction puissance)

    Citation Envoyé par matthias
    Je crois qu'elle parlait du problème posé par Martini_bird ...
    Aaaaaaaaaaaaaaaah !!!

    C'est de quel niveau le problème de Martini Bird ?

  14. #11
    Bleyblue

    Re : dérivée (d'une fonction puissance)

    Bonjour,

    Je mets mon grain de sel dans la conversation car le problème m'intéresse ...

    J'ai pas encore essayé, mais on devrait y arriver en calculant :



    Avec b réel non ?

  15. #12
    matthias

    Re : dérivée (d'une fonction puissance)

    Citation Envoyé par Zazeglu
    Bonjour,

    Je mets mon grain de sel dans la conversation car le problème m'intéresse ...

    J'ai pas encore essayé, mais on devrait y arriver en calculant :



    Avec b réel non ?
    Oui, c'est un peu la définition de la dérivée
    Avec bien sûr b réel, mais aussi a réel (pas nécessairement entier, sinon c'est pas drôle)

  16. Publicité
  17. #13
    Bleyblue

    Re : dérivée (d'une fonction puissance)

    Ah oui. Poutant il à l'air assez embêtant à développer le numérateur car on ne connait pas a ...

    Sinon avec la méthode de mathias, ça a l'air nettement plus simple, mais alors on a des restrictions niveau du domaine de x je pense ...

  18. #14
    matthias

    Re : dérivée (d'une fonction puissance)

    Citation Envoyé par Zazeglu
    Sinon avec la méthode de mathias, ça a l'air nettement plus simple, mais alors on a des restrictions niveau du domaine de x je pense ...
    évidemment.
    A la base, les puissances non entières ne sont définies que pour des réels positifs.

  19. #15
    Bleyblue

    Re : dérivée (d'une fonction puissance)

    Ah oui matthias c'est toi, j'avais pas fait attention quand j'ai dis "la méthode de matthias"
    Mais il faut encore voir quelle puissance non ? Les exposants fractionnaires impaires c'est bien définit sur les négatifs ...

  20. #16
    matthias

    Re : dérivée (d'une fonction puissance)

    Citation Envoyé par Zazeglu
    Ah oui matthias c'est toi, j'avais pas fait attention quand j'ai dis "la méthode de matthias"
    Mais il faut encore voir quelle puissance non ? Les exposants fractionnaires impaires c'est bien définit sur les négatifs ...
    oui, c'est pour ça que j'ai mis un à la base qui ne veut d'ailleurs pas dire grand-chose. (enfin pour être rigoureux, fractionnaire impair ne veut pas dire grand-chose non plus, fractions irréductibles à dénominateur impair, c'est mieux)

  21. #17
    Brikkhe

    Re : dérivée

    Citation Envoyé par Romain29
    heu, tu es sûr ?

    Ca serait pas plutôt ... 40x1/2 = 40 racine de x
    re,
    c'est ca! oublie de parenthèses, dsl.
    @pluche!

Sur le même thème :

Discussions similaires

  1. Dérivée d'une puissance
    Par kaced dans le forum Mathématiques du collège et du lycée
    Réponses: 4
    Dernier message: 17/06/2012, 01h24
  2. derivée d'une fonction
    Par ririri dans le forum Mathématiques du supérieur
    Réponses: 11
    Dernier message: 31/10/2007, 11h12
  3. derivée d'une puissance
    Par MAUREENB dans le forum Mathématiques du collège et du lycée
    Réponses: 7
    Dernier message: 11/04/2007, 14h00
  4. démonstration de la dérivée de la fonction x puissance n
    Par patxiku dans le forum Mathématiques du collège et du lycée
    Réponses: 5
    Dernier message: 22/01/2007, 20h33
  5. dérivée d'une fonction
    Par aurel.6 dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 10/12/2005, 21h22