intégrale de 0?
Répondre à la discussion
Affichage des résultats 1 à 27 sur 27

intégrale de 0?



  1. #1
    invite3ec0e2c7

    intégrale de 0?


    ------

    Bonjour,
    est ce que quelqu'un pourrait me renseigner sur le résultat de l'intégrale de 0? est ce zéro?
    Est ce le même résultat pour l'intégrale d'une fonction valant 0 ou d'un segment?
    Merci d'avance

    -----

  2. #2
    invitec314d025

    Re : intégrale de 0?

    L'intégrale est toujours l'intégrale d'une fonction (ici la fonctionn nulle).

  3. #3
    inviteaeeb6d8b

    Re : intégrale de 0?

    L'intégrale de f(x)=0 sur n'importe quel intervalle dans R est nulle.

  4. #4
    invite4793db90

    Re : intégrale de 0?

    Histoire de rebondir sur une trivialité: si l'intégrale d'une fonction numérique f est nulle, que peut-on dire de f?

  5. A voir en vidéo sur Futura
  6. #5
    inviteaeeb6d8b

    Re : intégrale de 0?

    > elle peut être constante "en" 0
    > sa RG est obligée de couper l'axe des abscisses, autrement dit il existe (au moins un) c dans l'intervalle t.q. f(c)=0
    C'est correct ?
    il y a autre chose ?

  7. #6
    invite6f044255

    Re : intégrale de 0?

    Citation Envoyé par martini_bird
    Histoire de rebondir sur une trivialité: si l'intégrale d'une fonction numérique f est nulle, que peut-on dire de f?
    Soit c'est la fonction nulle, soit elle prend des valeurs positives ET negatives.
    Tu attendais peut-etre plus recherche que ca, non?

  8. #7
    invitec314d025

    Re : intégrale de 0?

    Citation Envoyé par Romain29
    sa RG est obligée de couper l'axe des abscisses, autrement dit il existe (au moins un) c dans l'intervalle t.q. f(c)=0
    C'est correct ?
    C'est vrai seulement si elle est continue...
    Or continue par morceaux est suffisant pour être intégrable.

  9. #8
    inviteaeeb6d8b

    Re : intégrale de 0?

    on est d'accord ixi !

    [EDIT : croisement ! Aaargh !]

    [re Edit : en réponse à Matthias !]
    alors elle est positive ET négative, comme l'a dit ixi !

  10. #9
    invitec314d025

    Re : intégrale de 0?

    Citation Envoyé par Romain29
    on est d'accord ixi !

    [EDIT : croisement ! Aaargh !]
    Oui, mais elle peut prendre des valeurs positives et négatives sans être nulle nulle-part.
    [EDIT: suite à ton edit, on est d'accord ]

  11. #10
    inviteaeeb6d8b

    Re : intégrale de 0?

    J'avoue que je n'avais pas pensé à une fonction continue par morceaux (peut-être parce que c'est pas au programme ?), mais bon j'ai pas d'excuses !

    il y a autre chose à dire ?


    [Croisements, carrefours et autres ronds points]

  12. #11
    invitec314d025

    Re : intégrale de 0?

    Pendant que j'y pense. Si la fonction est nulle presque partout, elle peut prendre des valeurs strictement positives, sans prendre de valeurs strictement négatives (ou l'inverse)...

  13. #12
    wizz

    Re : intégrale de 0?

    la dérivée d'une fonction constante est nulle.
    donc l'intégrale d'une fonction nulle est une constante.

    f(x)=a
    f'(x)=0
    soit f'(x)=g(x)=0
    donc G(x)=f(x)=cte.


    il y en a qui vont se faire tirer les oreilles par son prof de maths!

  14. #13
    invitec314d025

    Re : intégrale de 0?

    Citation Envoyé par wizz
    la dérivée d'une fonction constante est nulle.
    donc l'intégrale d'une fonction nulle est une constante.
    ...
    il y en a qui vont se faire tirer les oreilles par son prof de maths!
    Oui, surtout ceux qui confondent intégrales et primitives

  15. #14
    invite3bc71fae

    Smile Re : intégrale de 0?

    Arrêtez de confondre intégrale et primitive, SVP et n'oubliez de préciser l'intervalle d'intégration. Merci. (Tonalité gare SNCF)

  16. #15
    inviteab2b41c6

    Re : intégrale de 0?

    En fait on ne peut rien dire.
    Comme le souligne Mathias, et comme j'aimerai le souligner:

    L'intégrale d'une fonction dépend de:
    -La fonction
    -L'ensemble sur lequel on intègre.

    Notamment, une fonction peut vérifier que
    -son intégrale sur un certain ensemble E est nulle sans pourtant ne jamais s'annuler nul part, et pourtant être continue et même C infinie partout où elle est définie...
    -être jamais négative et avoir son intégrale sur tout ensemble qui est nulle.
    -être dérivable partout, de dérivée nulle partout, et ne jamais être constante.

    etc.
    C'est pour cela qu'il faut connaître absolument toutes les hypothèses d'un cours, même si elles nous paraissent superflues, parce que dans tous les cas, elles sont importantes...

  17. #16
    invitea77054e9

    Re : intégrale de 0?

    Quelques indications pour répondre à la question initialement posée:

    D'un point de vue géométrique, l'intégrale d'une fonction d'une variable réelle sur un intervalle représente une aire algébrique.
    Pour une fonction à valeurs positives, on peut l'identifier à l'aire délimité par la courbe représentative de la-dite fonction, l'axe des abscisse sur l'intervalle considéré.

    Comme la fonction identiquement nulle est positive sur une intervalle (quelqu'il soit), sont intégrale (donc l'aire sous sa courbe) est intuitivement nulle.
    D'ailleurs le théorème fondamentale du calcul intégrale nous permet de confirmer cette intuition, puisqu'une primitive de la fonction identiquement nulle est une fonction constante, et donc la différence de la valeur de cette primitive aux extremités de l'intervalle considéré est bien nulle.


    A présent considérons une fonction dont l'intégrale sur une intervalle [a;b] (avec a>b) s'annule. Que peut-on dire sur cette fonction? Privé d'indications supplémentaires, on ne peut rien dire.
    Cependant, si la fonction considérée est continue sur [a;b] et est à valeur positive, on peut conclure qu'elle est identiquement nulle. C'est l'hypothèse de continuité qui importe ici, pour une fonction discontinue on ne peut rien dire.


    Ptitete, je pense que tu devrais chercher du coté d'un bon cours d'intégration, tu devrais y trouver pas mal de réponse.

    Si tu as d'autres questions, n'hésite pas.

  18. #17
    invitedf667161

    Re : intégrale de 0?

    Dans le tas je retiens le post de Quinto.
    Il mets le doigt là où ça fait mal, ie sur les a priori.
    Dans la théorie de l'intégration (celle de Lebesqgue avec les tribus et tout le tintouin), il peut se passer des choses bien bizarroides.

    Et pour répondre à la questrion de Martini : on ne peut pas dire grand chose d'une fonction (mesurable) numérique dont l'intégrale est nulle sur un intervalle!

  19. #18
    invite143758ee

    Re : intégrale de 0?

    bonjour,
    un truc que je n'ai pas bien compris, c'est qu'un fonction peut être continue par morceaux sur un intervalle [a,b] avec f(a)>0 et f(b)<0 , mais sans atteindre la valeur 0 ?

    en gros, une question comme ça:
    continue par morceaux implique continue ?

    Oui, mais elle peut prendre des valeurs positives et négatives sans être nulle nulle-part.

  20. #19
    invitec314d025

    Re : intégrale de 0?

    Citation Envoyé par dupo
    en gros, une question comme ça:
    continue par morceaux implique continue ?
    non, justement.
    continue par morceaux, ça veut dire que tu découpes ton intervalle de départ en plusieurs intervalles, et que ta fonction est continue sur chaque sous-intervalle, pas nécessairement sur l'intervalle complet.

  21. #20
    invite143758ee

    Re : intégrale de 0?

    mais, un truc qui me gène c'est le prolongement par continuité pour les points n'appartenant pas aux intervalles où la fonctions est continue.
    si tu je prolonge sur ]a,b[, f, tel que f(b)=e d'une part, et que d'autre part, je prolonge par continuité f sur ]b,c[ tel que f(b) différent de e ? c'est là que je comprend pas trop. comment on peut avoir deux limites ?

  22. #21
    invitec314d025

    Re : intégrale de 0?

    Citation Envoyé par dupo
    mais, un truc qui me gène c'est le prolongement par continuité pour les points n'appartenant pas aux intervalles où la fonctions est continue.
    si tu je prolonge sur ]a,b[, f, tel que f(b)=e d'une part, et que d'autre part, je prolonge par continuité f sur ]b,c[ tel que f(b) différent de e ? c'est là que je comprend pas trop. comment on peut avoir deux limites ?
    Tu ne peux pas la prolonger par continuité, elle n'est pas continue c'est tout. Ca n'empêche heureusement pas de l'intégrer.

  23. #22
    invite143758ee

    Re : intégrale de 0?

    http://c.caignaert.free.fr/chapitre7/node1.html
    ben, je sais pas, je regarde la définition.

  24. #23
    invitec314d025

    Re : intégrale de 0?

    Oui, prolongeable par continuité sur chaque sous-intervalle, c'est à dire qu'elle admet une limite finie à droite et à gauche en chaque point de discontinuité. Mais les limites à droite et à gauche ne sont pas nécessairement identiques.
    Ce sont donc les restrictions de la fonctions à chaque sous-intervalle qui sont prolongeable par continuité, pas la fonction elle-même.

  25. #24
    invite143758ee

    Re : intégrale de 0?

    non, j'ai rien dis.

    merci matthias!

  26. #25
    GrisBleu

    Re : intégrale de 0?

    salut

    Pour martini_bird
    Si je prends une fonction continue sur R (pour eviter les per morceaus et autres presque partout) et dont l integrale sur R est nulle, je dis qu elle oscille : sa transformee de Fourier est nulle en 0, pas de composante constante
    d ailleurs c est une condition pour avoir une ondelette mere dans la transformee en ondelette

  27. #26
    GrisBleu

    Re : intégrale de 0?

    salut

    Pour martini_bird
    Si je prends une fonction continue sur R (pour eviter les par morceaux et autres presque partout), integrable sur R et dont l integrale sur R est nulle, je dis qu elle oscille : sa transformee de Fourier est nulle en 0, pas de composante constante

    RQ: d ailleurs c est une condition pour avoir une ondelette mere dans la transformee en ondelette

  28. #27
    invite4793db90

    Re : intégrale de 0?

    Salut,

    en effet, pour résumer, si l'intégrale d'une fonction f est nulle, on ne peut surtout pas conlure que la fonction est nulle.

    Dans le seul cas où f est à la fois positive et continue, alors la fonction est nulle.

    Si f est seulement positive, on peut dire que l'ensemble des points où f ne s'annule pas est un ensemble de mesure nulle (ou négligeable) pour la mesure considérée (Lebesgue, la plupart du temps).

    Si f est seulement continue, alors f prend effectivement des valeurs positives et négatives (f change de signe au moins une fois).

    Si on ne sait rien de f, alors on ne peut rien dire!

    Dans le cas où f est intégrable sur R, je suis d'accord avec ton interprétation, wlad_von_tokyo.

    Bravo à tous.

Discussions similaires

  1. Intégrale
    Par invite91552492 dans le forum Mathématiques du collège et du lycée
    Réponses: 4
    Dernier message: 31/10/2007, 21h14
  2. expression d'une intégrale en termes d'une intégrale elliptique
    Par invite93279690 dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 25/09/2007, 20h00
  3. intégrale
    Par invitef2d8cce9 dans le forum Mathématiques du collège et du lycée
    Réponses: 5
    Dernier message: 26/03/2007, 17h53
  4. Integrale...
    Par invite71b8e227 dans le forum Mathématiques du supérieur
    Réponses: 9
    Dernier message: 09/09/2006, 16h48
  5. intégrale mathématique vs intégrale physique
    Par invitec3f4db3a dans le forum Mathématiques du supérieur
    Réponses: 12
    Dernier message: 17/04/2006, 20h35