Sous espace engendre
Répondre à la discussion
Affichage des résultats 1 à 4 sur 4

Sous espace engendre



  1. #1
    inviteed4c160a

    Sous espace engendre


    ------

    Bonjour, je vous demande une petite aide sur un exercice.

    Voici l'énoncé : Soit p={X(x1,x2,x3,x4) / x1+x2+x3=0 et x1-x4=0}
    Soit Q le sous espace engendre par {(1,1,0,1), (1,0,0,2), (2,3,0,1)}

    1) Il fallait montrer que P est un sous espace. Je l'ai fais.
    2) Ensuite, il faut trouver une base pour P et Q. Je l'ai fais pour P mais pour Q j'ai procédé de la manière suivante : au+bv+cw=0 et j'ai cherché a,b,c. Mais je ne sais pas quoi faire pour la suite pour trouver la base. Incomplet
    3)Et il faut que je trouve les conditions nécessaire et suffisante sur(x3,x4) pour X appartient à Q. Incomplet.

    Donc si quelqu'un peut m'aider sur la question 2 et 3 ça serait super sympa de sa part.

    A bientôt.

    -----

  2. #2
    inviteed4c160a

    Re : Sous espace engendre

    Aucune idée ?

  3. #3
    invite8a80e525

    Re : Sous espace engendre

    Bonjour,

    tu es bien parti pour la 2. Une fois que tu as trouvé a,b,c, tu peux exprimer un de tes vecteurs en fonction d'une combinaison linéaire des deux autres (par exemple w en fonction de u et v). Donc Q=Vect(u,v,w)=Vect(u,v) et il ne te reste plus qu'à prouver que (u,v) est libre.

    Pour la 3, résous (x1,x2,x3,x4)=au+bv d'inconnue (a,b)

  4. #4
    inviteed4c160a

    Re : Sous espace engendre

    Merci Forhaia. C'est vraiment super de ta part de m'avoir aiguillé.


    Merci encore et à bientôt.

  5. A voir en vidéo sur Futura

Discussions similaires

  1. sous-groupe engendré
    Par invitefa636c3d dans le forum Mathématiques du supérieur
    Réponses: 10
    Dernier message: 30/12/2010, 11h36
  2. probleme sous espace vectoriel engendré par une partie
    Par invite69d45bb4 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 08/03/2009, 13h49
  3. sous espace vectoriel engendré par une partie
    Par invite69d45bb4 dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 08/03/2009, 08h31
  4. espace vectoriel engendré par l'intersection de deux hyperplan
    Par invitea06097b6 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 13/04/2008, 23h08
  5. Sous-groupe engendré.
    Par invitee0cfa2c5 dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 27/04/2006, 10h02