Rationnels entre les réels
Répondre à la discussion
Affichage des résultats 1 à 8 sur 8

Rationnels entre les réels



  1. #1
    invitede8302a1

    Rationnels entre les réels


    ------

    bonsoir,

    existe-t-il deux rationnels a et b entre deux réels x et y quelconques ?
    x<a<b<y

    ça semble évident mais comment le démontrer ?

    -----

  2. #2
    invite1e1a1a86

    Re : Rationnels entre les réels

    a l'aide de partie entière on arrive a toujours trouver un rationnel entre deux réels quelconques a<b (exemple 2^(-n)E(2^n*n) pour n suffisamment grand je crois)

    à partir de là on peux avoir un autre rationnel entre le premier et un réel.

  3. #3
    invite2e5fadca

    Re : Rationnels entre les réels

    Il suffit de montrer qu'entre deux réels quelconques, il existe un rationnel. Pour se faire on se fixe deux réels x<y. Comme R est archimédien il existe un entier n tel que n(y-x)>1. Mais alors il existe un entier m vérifiant : nx < m < ny , donc x < m/n < y. CQFD

  4. #4
    Flyingsquirrel

    Re : Rationnels entre les réels

    Citation Envoyé par SchliesseB Voir le message
    (exemple 2^(-n)E(2^n*n) pour n suffisamment grand je crois)
    Il y a trop de dans ton expression.

  5. A voir en vidéo sur Futura
  6. #5
    invitede8302a1

    Re : Rationnels entre les réels

    ok, merci beaucoup

  7. #6
    invite1e1a1a86

    Re : Rationnels entre les réels

    Citation Envoyé par Flyingsquirrel Voir le message
    Il y a trop de dans ton expression.
    exact, faute de frappe
    2^(-n)E(2^n*y)

  8. #7
    invitea0db811c

    Re : Rationnels entre les réels

    Je ne sais pas si c'était volontaire, mais j'aime bien ton petit jeu de mot Flying

  9. #8
    ichigo01

    Re : Rationnels entre les réels

    Regarde le fichier ci joint !
    Images attachées Images attachées

Discussions similaires

  1. comparaison entre deux nombre réels
    Par invite018077e1 dans le forum Mathématiques du collège et du lycée
    Réponses: 5
    Dernier message: 11/01/2010, 09h23
  2. Ensemble bien ordonné concernant les nombres rationnels
    Par invite6754323456711 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 29/11/2009, 09h28
  3. Les réels a,b et c
    Par invite2f4a01c9 dans le forum Mathématiques du collège et du lycée
    Réponses: 5
    Dernier message: 17/08/2009, 22h12
  4. Les Nombres algrébriques non rationnels
    Par inviteaa0092a1 dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 16/05/2008, 09h09
  5. les rationnels
    Par invite48a230de dans le forum Mathématiques du collège et du lycée
    Réponses: 4
    Dernier message: 20/09/2007, 22h42