Estimateur
Répondre à la discussion
Affichage des résultats 1 à 4 sur 4

Estimateur



  1. #1
    invite13b154dd

    Estimateur


    ------

    Soit une variable aléatoire X présentant la fonctoin de densité

    f(x)=(+1)x
    pour 0<x<1

    autrement =0

    Sachant que X1,X2,...Xn représentent un échantillon aléatoire de taille n, déterminez l'estimateur du maximum de vraisemblance de .

    Pour l'instant à quoi je suis arrivée c'est de trouver la fonction de répartition qui est

    F(x)=x(+1)
    L()=x(+1)=(x)+1
    C'est surement sur cette ligne que jeme suis trompé sinon..je ne vois pas alors..si je continue le raisonnement j'arivve avec,
    lnL()=(+1)ln Xi
    dlnL()/d=ln Xi
    Qu'on pose égale à 0..Donc si quelqu,un pourrait m'indiquer où est mon erreur ce serait bien apprécié...Merci

    -----

  2. #2
    inviteae4072e1

    Re : Estimateur


  3. #3
    inviteae4072e1

    Re : Estimateur



    Et donc la dérivée s'annule équivaut à :



    C'est-à-dire ...

  4. #4
    inviteae4072e1

    Re : Estimateur

    Pardon erreur de ma part, on dérive par rapport à Alpha et pas X ... Mais le principe reste le même...

  5. A voir en vidéo sur Futura

Discussions similaires

  1. Estimateur en statistique
    Par invite67614aac dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 19/11/2009, 19h57
  2. Précision estimateur,échantillon statistique
    Par invitec52cb124 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 24/04/2008, 12h46
  3. Estimateur sans biais
    Par invitefce64850 dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 18/01/2008, 19h38
  4. estimateur avec MMC
    Par invite72f64164 dans le forum Mathématiques du supérieur
    Réponses: 18
    Dernier message: 28/11/2007, 18h28
  5. proba : estimateur
    Par invite5b777dc4 dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 20/08/2007, 08h23