Integrale d'une fonction impaire sur R
Répondre à la discussion
Affichage des résultats 1 à 14 sur 14

Integrale d'une fonction impaire sur R



  1. #1
    inviteb7283ac9

    Integrale d'une fonction impaire sur R


    ------

    Bonsoir,

    J'aimerai affirmer que l'intégrale sur R d'une fonction réelle impaire intégrable sur R est nulle. En ai-je le droit ?

    Merci à vous

    -----

  2. #2
    invitec317278e

    Re : integrale d'une fonction impaire sur R

    Je ne sais pas si tu as le droit de l'affirmer, mais en tout cas c'est vrai.

  3. #3
    DarK MaLaK

    Re : integrale d'une fonction impaire sur R

    Tu peux aussi le démontrer :




    Je crois qu'il n'y a pas d'erreur en faisant juste le changement de variable x->-x.

  4. #4
    inviteb7283ac9

    Re : integrale d'une fonction impaire sur R

    Merci, impek !

  5. A voir en vidéo sur Futura
  6. #5
    invited7e4cd6b

    Re : integrale d'une fonction impaire sur R

    Bonsoir les gens,
    Ca marche aussi pour les tout couple de bornes reelles : (a;-a)

  7. #6
    invite332de63a

    Re : integrale d'une fonction impaire sur R

    Bonjour , évidemment si un intervalle est est symétrique par rapport à 0 alors l'intégrale sur cet intervalle est nulle si on y intègre une fonction impaire. le cas précédemment traité en étant une extension sur R tout entier.

  8. #7
    inviteb7283ac9

    Re : integrale d'une fonction impaire sur R

    Citation Envoyé par RoBeRTo-BeNDeR Voir le message
    Bonjour , évidemment si un intervalle est est symétrique par rapport à 0 alors l'intégrale sur cet intervalle est nulle si on y intègre une fonction impaire. le cas précédemment traité en étant une extension sur R tout entier.
    Pas d'accord sur le évidemment : cf x^3
    pas de pb sur [-a;a] mais sur R c'est autre chose

  9. #8
    invite332de63a

    Re : integrale d'une fonction impaire sur R

    Ben justement je parlai de [-a,a] en réponse à donkishot

  10. #9
    inviteb7283ac9

    Re : integrale d'une fonction impaire sur R

    pardon, j'avais mal compris...

  11. #10
    invite332de63a

    Re : integrale d'une fonction impaire sur R

    pas de problème il vaut mieux intervenir que laisser un point litigieux mettre le doute dans la tête de quelqu'un. Comme toi tu l'as compris comme cela alors si quelqu'un d'autre le comprenait comme toi alors çà aurait pu ne pas lui être bénéfique mais bien au contraire.

    RoBeRTo

  12. #11
    invited7e4cd6b

    Re : integrale d'une fonction impaire sur R

    bonsoir,
    C'est quoi le probleme avec x3/3 ??

  13. #12
    invite9617f995

    Re : integrale d'une fonction impaire sur R

    Pour des intégrales généralisées et donc notamment les intégrales sur R, si la fonction n'est pas définie aux deux bornes de l'intervalle ou si ces bornes sont plus et moins l'infini, on découpe l'intégrale en deux et on regarde si chacune converge.

    Par exemple pour x3, on va étudier l'intégrale sur ]-l'infini,0[ et l'intégrale sur [0;+l'infini[. Comme ici il y a au moins une des deux qui diverge (en l'occurrence chacune diverge), on dit que l'intégrale sur R diverge.

  14. #13
    invite332de63a

    Re : integrale d'une fonction impaire sur R

    Bonjour,

    en fait le problème est que les bornes sont et et que l'on serait tenté de dire que comme on a pour tout a réel alors en passant à la limite : mais ceci n'est pas direct, par exemple on a :

    ceci quelque soit a réel mais il ne faudra surtout pas dire que car c'est bien évidemment faux elle vaut si je ne me trompe pas.

    RoBeRTo

  15. #14
    invite1e1a1a86

    Re : integrale d'une fonction impaire sur R

    Je ne crois pas que a plus de sens que (et je ne vois pas pourquoi elle vaudrait ...)

    http://fr.wikipedia.org/wiki/Intégrale_impropre

    Néanmoins, en physique mais ça n'a pas vraiment de sens mathématique écrit comme tel (car c'est une "vrai" forme inderterminée, comme si je demandais "que vaut ", tant que je donne pas la façon de faire les limites (x=y, x=y², x=y+a etc...) ça n'a aucun sens (et ça peut valoir n'importe quoi...)).

    c'est pareil pour qui veut juste dire:

Discussions similaires

  1. Développement limité d'une fonction impaire
    Par invitef80ee1ab dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 24/12/2009, 13h48
  2. Fonction impaire
    Par invite8290547b dans le forum Mathématiques du collège et du lycée
    Réponses: 5
    Dernier message: 22/11/2009, 16h42
  3. Dériée d'une fonction impaire
    Par invited331ce93 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 18/10/2009, 16h31
  4. calcul d'une intégrale d'une fonction de bessel
    Par invite963647d9 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 29/09/2007, 13h31
  5. Intégrale sur un contour fermé d'une fonction analytique ...
    Par invite0f31cf4c dans le forum Mathématiques du supérieur
    Réponses: 8
    Dernier message: 28/01/2007, 15h55