0 rationnel ?
Répondre à la discussion
Affichage des résultats 1 à 15 sur 15

0 rationnel ?



  1. #1
    invite184d812c

    0 rationnel ?


    ------

    bonjour,
    est-ce que 0 est un nombre rationnel ou irrationnel ?

    -----

  2. #2
    erik

    Re : 0 rationnel ?

    Salut,

    0=0/1 c'est donc un rationnel.

  3. #3
    invite184d812c

    Re : 0 rationnel ?

    ok...
    parce que on me demande ceci:

    soit F: R --> R

    F(x) = { x si x est rationnel }
    F (x) = { sin x si x est irrationnel }

    mq. F'(x) = 1

    donc j ai juste a dire que comme 0 est rationnel...
    F(x) = x donc F'(x) = 1 donc F'(0) = 1 ... ?

  4. #4
    invite899aa2b3

    Re : 0 rationnel ?

    Attention, l'énoncé ne dit pas qu'au voisinage de on a (il dit même un truc incompatible). Il faut donc calculer la limite du taux d'accroissement.

  5. A voir en vidéo sur Futura
  6. #5
    invite184d812c

    Re : 0 rationnel ?

    heu... je fais sa comment ?

  7. #6
    invite184d812c

    Re : 0 rationnel ?

    est-ce que sa ressemble à

    lim( f(x) - f(0) )/(x - 0) = lim 1 - 1/x = 1 ??
    x->0

  8. #7
    invite184d812c

    Re : 0 rationnel ?

    est-ce que je peux me suicider vous pensez

  9. #8
    breukin

    Re : 0 rationnel ?

    Il n'y a pas d'équipe face à leurs écrans prête à répondre aux questions.

    Je pense que l'énoncé demande de montrer que F'(0)=1, et non de montrer que F'(x)=1.
    Car si F'(x)=1, alors F(x)=x+a, ce qui n'est pas le cas.
    Pour calculer si la fonction est dérivable en 0, et calculer sa dérivée, il faut analyser

    Et donc
    si x est rationnel (dont 0)
    si x est irrationnel

  10. #9
    invitedd99a2fc

    Question Re : 0 rationnel ?

    Bonjour,

    j'ai justement ce problème là à résoudre... je suis correct pour la résolution et tout mais... j'aimerais savoir pour quel raison nous devons passer par la dérivé des (en quelquesorte) 2 fonctions...

    en résumer... je ne comprend pas pourquoi il faut montrer que même si 0 serait irrationnel que F(0) = 1 quand meme... je ne comprends pas pourquoi passer par les irrationnelles

    Merci

  11. #10
    breukin

    Re : 0 rationnel ?

    On ne passe pas par les irrationnels pas plus qu'on y passe, et d'ailleurs, on ne passe pas non plus par les rationnels, pas plus qu'on y passe.

    On veut voir si la fonction est dérivable en 0, et si oui, quelle est sa dérivée.

    Il faut donc regarder si la quantité définie dans mon message plus haut possède ou non une limite.
    La quantité en question vaut 1 quand x est rationnel, et vaut sin x /x quand x est irrationnel. Cette quantité a-t-elle une limite en 0 ? Oui, et elle vaut 1, puisque sin x /x tend vers 1 quand x tend vers 0.

  12. #11
    invitedd99a2fc

    Re : 0 rationnel ?

    Merci, cela m'aide

    Mais je me sens encore un peu perdu... je suis désolé...

    il a un seulement un petit souci... c'est exactement ta dernière phrase... "Oui, et elle vaut 1, puisque sin x /x tend vers 1 quand x tend vers 0."

    pourquoi PUISQUE sin x/x tend vers 1 ? je comprends très bien que sin x /x tend vers 1 quand x tend vers 0... mais je ne comprend pas pour quel raison cest en raison de sin x/x et non simplement ta première limite énoncé dans un message plus haut...

    Merci de votre aide c'est très apprécié

  13. #12
    invitedd99a2fc

    Re : 0 rationnel ?

    en fin de compte...

    C'est un peu comme vérifier la limite a gauche et a droite? 0- et 0+ ???

    Merci

  14. #13
    breukin

    Re : 0 rationnel ?

    Non, pas exactement.
    Si vous avez deux fontions et qui tendent vers quand tend vers , alors une fonction qui vaut soit , soit (selon une règle quelconque de dépendance sur ) tend aussi vers quand tend vers .

    Ici, et , et la règle de dépendance est la rationalité (ou l'irrationalité).
    Dernière modification par breukin ; 30/09/2011 à 19h54.

  15. #14
    invitedd99a2fc

    Re : 0 rationnel ?

    Donc nous devons montrer que les deux fonctions sont égals à 1 quand x tend vers 0 ? de cette façon nous allons montrer que F'(0) = 1?

    Je suis désolé si je parrais un peu pour un ortho mais j'ai l'impression de loupé un bout de l'explication...

  16. #15
    breukin

    Re : 0 rationnel ?

    Je pense que tu te bloques sur quelque chose alors que c'est fini.

    Tu as dit toi même que "je comprends très bien que sin x /x tend vers 1 quand x tend vers 0... "
    Donc c'est un résultat connu que tu n'as pas besoin de démontrer, tout comme tu n'as pas besoin de redémontrer qu'une fonction constante tend vers cette constante quand x tend vers 0.

    Reprends mon message du 6/12 :
    la fraction dont la limite, si elle existe, est la dérivée en 0, vaut soit 1, soit une valeur qui tend vers 1 quand x tend vers 0. Donc la fraction tend vers 1 quand x tend vers 0 (et donc la fonction est dérivable en 0, de dérivée 1). Et voilà, c'est tout, c'est terminé, il n'y a rien d'autre à dire.

Discussions similaires

  1. rationnel et irrationnel
    Par neo62950 dans le forum Mathématiques du supérieur
    Réponses: 12
    Dernier message: 07/11/2010, 16h51
  2. Polynôme rationnel
    Par Bleyblue dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 05/11/2010, 12h27
  3. nombre rationnel et fraction
    Par invited661f5f2 dans le forum Mathématiques du collège et du lycée
    Réponses: 2
    Dernier message: 06/10/2010, 15h50
  4. Entier rationnel et décimaux
    Par inviteb473d51f dans le forum Mathématiques du supérieur
    Réponses: 10
    Dernier message: 28/12/2008, 07h04
  5. rationnel ou irrationnel?
    Par ash117 dans le forum Mathématiques du supérieur
    Réponses: 10
    Dernier message: 01/10/2007, 12h40