intégrale impropre
Répondre à la discussion
Affichage des résultats 1 à 14 sur 14

intégrale impropre



  1. #1
    invite4479d333

    intégrale impropre


    ------

    Bonjour,
    J'ai un petit problème pour résoudre ce problème:

    soit voir pièce jointe

    montrer que lim F[a,b](x)= ln(b/a) en utilisant un encadrement.
    x->0+

    tout d'abord j'ai dit que sin(t)^3/t^2 < 1/t d'où F[a,b](x)<ln(b/a)

    mais pour l'autre encadrement je n'arrive pas à trouver est-ce que quelqu'un pourrait m'aider ? SVP

    -----
    Images attachées Images attachées  

  2. #2
    invite0931ef5e

    Re : intégrale impropre

    on suppose b>a, si tu prends x petit, la longeur de l'interval d'integration est petit (b-a)x plus petit que disons pi/2, donc la fonction sous l'integrale ne change pas de signe et est d'ailleurs positive sur [ax,bx], mais sin(t) est plus petit que t pour t (équivalent a t-t^3/6) proche de 0 donc sin^3 < t^3 donc ta fonction tu peux la majorer par t, et F par (b-a)x², qui tend vers 0 donc la limite de F est 0

  3. #3
    invite4479d333

    Re : intégrale impropre

    Bonjour wopl_a,
    j'ai fais une petite erreur d'écriture en fait c'est l'intégrale de ax à bx de sin(t)/t^2
    Images attachées Images attachées  

  4. #4
    invite4479d333

    Re : intégrale impropre

    ?? < sin(t)/t^2 < 1/t

    => ?? < F[a,b](x) < ln(b/a)

    il me manque l'encadrement de gauche ...

  5. A voir en vidéo sur Futura
  6. #5
    invite0931ef5e

    Re : intégrale impropre

    "on suppose b>a, si tu prends x petit, la longeur de l'interval d'integration est petit (b-a)x plus petit que disons pi/2, donc la fonction sous l'integrale ne change pas de signe et est d'ailleurs positive sur [ax,bx]"(je reprends ce que j'ai dit avant), mais sin(t) est équivalent à t - t^3/6 + etc..(Taylor), tu peux le minorer par, par exemple, t - t^3 (t-t^3 > 0 car t < 1)

  7. #6
    invitebe08d051

    Re : intégrale impropre

    Salut,

    Tu peux par exemple, exploiter la concavité de la fonction sin sur :


  8. #7
    invite4479d333

    Re : intégrale impropre

    Merci pour vos réponses

  9. #8
    invitec317278e

    Re : intégrale impropre

    Citation Envoyé par mimo13 Voir le message
    Salut,

    Tu peux par exemple, exploiter la concavité de la fonction sin sur :

    comment tu conclus avec ça ?

  10. #9
    invite4479d333

    Re : intégrale impropre

    On ne peut pas conclure avec cet encadrement mais avec celui de wopl_a on trouve bien le résultat attendu, cependant je ne comprends pas pourquoi on prend la limite en 0+ et pas directement la limite en 0?

  11. #10
    invitea7fcfc37

    Re : intégrale impropre

    Salut,

    pourrait aider.

  12. #11
    invitea7fcfc37

    Re : intégrale impropre

    Citation Envoyé par kNz Voir le message
    Salut,

    pourrait aider.
    Désolé, pas vu la réponse de wopl_a

  13. #12
    invitebe08d051

    Re : intégrale impropre

    Citation Envoyé par Thorin Voir le message
    comment tu conclus avec ça ?
    Désolé, j'ai lu un peu trop vite.

  14. #13
    invite4479d333

    Re : intégrale impropre

    Cependant je ne comprends pas pourquoi on prend la limite en 0+ et pas directement la limite en 0?

  15. #14
    invitebe08d051

    Re : intégrale impropre

    Salut,

    Un petite image de la fonction :



    Remarque que , donc on peut très bien parler de puisque de toute façon on a ici

    Mais le plus important, c'est que et soit de même signe non nuls, car sinon ton intégrale peut diverger.

Discussions similaires

  1. intégrale impropre
    Par invite68dfcdd0 dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 28/11/2010, 18h31
  2. integrale impropre
    Par inviteb3b67682 dans le forum Mathématiques du supérieur
    Réponses: 11
    Dernier message: 25/02/2010, 00h21
  3. Intégrale impropre
    Par invite91c4d39a dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 03/01/2010, 15h05
  4. integrale impropre
    Par inviteae6e334f dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 25/05/2008, 19h46
  5. integrale impropre
    Par invite8f81fa85 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 19/03/2007, 07h33