Topologie : Compacité
Répondre à la discussion
Affichage des résultats 1 à 7 sur 7

Topologie : Compacité



  1. #1
    invite5768f8f7

    Topologie : Compacité


    ------

    Bonjour J'ai du mal a demontrer ceci :


    1- Soit (xn) une suite convergente dans E vers x Alors {xn, n £ IN} U {x} est une partie compacte de E

    On peut la demontrer on utilisant cette definition de Compact :

    Soit A C E on dit que A est une partie Compacte de E ssi toute suites delements de A admet ou moins une valeur dadherence dans A

    2- Si f est continue au point a alors elle est toujours bornée sur une boule B(a,r) pour r suffisamment petit

    -----

  2. #2
    invited5b2473a

    Re : Topologie : Compacité

    1) C'est quoi E? Un livre
    Je suis d'accord avec ce que tu dis, il suffit d'écrire les choses.

    2) C'est quoi f et a ? Deux bouteilles?

  3. #3
    invite5768f8f7

    Re : Topologie : Compacité

    E partie de IR je pense

    f : fonction
    a: point limite

  4. #4
    invited5b2473a

    Re : Topologie : Compacité

    Citation Envoyé par houdaaa Voir le message
    E partie de IR je pense

    f : fonction
    a: point limite
    Ce qui m'intéresse (et je m'en doutais mais un peu de rigueur ne fait pas de mal) est surtout la nature de E. Pour 1), tu appliques la définition. Et pour 2), vu que f est continue, ça veut dire que |f(x)-f(a)| vaut moins de 1 pour x suffisamment près de a.

  5. A voir en vidéo sur Futura
  6. #5
    invite5768f8f7

    Re : Topologie : Compacité

    Stp Dit moi comment j'ecrit les choses correctement pour 1) je sais pas comment commencer et merci

  7. #6
    inviteea028771

    Re : Topologie : Compacité

    E est un espace métrique quelconque...

    La question 1 est plutôt simple :

    Soit yn une suite d'éléments de A.
    Si cette suite prend un nombre fini de valeurs, alors elle admet une valeur d'adhérence.
    Si cette suite prend un nombre infini de valeurs, alors il existe une sous suite de yn qui converge vers x :

    On a (avec ). Construisons par récurrence la suite u_n :


    . C'est possible car la suite yn prend une infinité de valeurs.

    Alors la suite est une sous suite de et est donc convergente.

    PS : La démonstration est un peu rapide, mais l'idée générale fonctionne.


    Pour la question 2

  8. #7
    invited5b2473a

    Re : Topologie : Compacité

    Tu veux pas le laisser réfléchir un peu? ;-D

Discussions similaires

  1. Compacité
    Par invite332de63a dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 20/11/2010, 20h54
  2. Topologie discrète et topologie cofinie
    Par invitecd16a0fc dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 03/07/2009, 11h20
  3. compacité
    Par invite769a1844 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 05/05/2008, 19h41
  4. Topologie et topologie metrique induite
    Par invite65d14129 dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 17/04/2007, 12h09
  5. compacité de SU(N)
    Par invite6f044255 dans le forum Mathématiques du supérieur
    Réponses: 10
    Dernier message: 14/11/2005, 19h24