Répondre à la discussion
Affichage des résultats 1 à 9 sur 9

Espérance d'une variable aléatoire a la puissance 4

  1. #1
    nawal0993

    Espérance d'une variable aléatoire a la puissance 4

    Bonjour je suis a la recherche d'une démonstration pour une propriété que notre professeur de mathématiques nous a donné en cours sans l'avoir démontré , et je ne vois pas comment m'y prendre, si vous pouviez me donner des indications .

    On doit calculer l'esperance dans le cadre d'une loi normale centrée réduite de la variable aléatoire X^4

    Donc ce qui revient à calculer : l'intégrale de (- l'infini à + l'infini ) de X^(4) x exp( - X^(2) / 2)

    Merci !

    Il nous dit que le résultat donne 3

    -----

    Dernière modification par nawal0993 ; 27/02/2012 à 10h47.

  2. Publicité
  3. #2
    God's Breath

    Re : Espérance d'une variable aléatoire a la puissance 4

    Bonjour,

    Il suffit de deux intégrations par parties pour se ramener à l'intégrale de Gauss :

    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.

  4. #3
    nawal0993

    Re : Espérance d'une variable aléatoire a la puissance 4

    Et moi je tombe sur 4 ...

  5. #4
    nawal0993

    Re : Espérance d'une variable aléatoire a la puissance 4

    Oki oki je crois avoir compris ma faute :! MERCI

  6. #5
    nawal0993

    Re : Espérance d'une variable aléatoire a la puissance 4

    Par contre pour moi la derniere ligné équivaut a 3 racine de 2Pi ... puisque l'integrale de exp ( -x2/2 ) est censée etre egale a racine de 2 pi non ?

  7. #6
    God's Breath

    Re : Espérance d'une variable aléatoire a la puissance 4

    Oui, mais la densité de la loi normale centrée réduite est , pas .

    Il y a donc un facteur supplémentaire pour calculer l'espérance :

    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.

  8. #7
    nawal0993

    Re : Espérance d'une variable aléatoire a la puissance 4

    non en fait c'est parce que j'avais oublié le coefficient ... 1/racine de 2 pi ... pour la loi normale !
    Merci beaucoup !

  9. #8
    nawal0993

    Re : Espérance d'une variable aléatoire a la puissance 4

    Ah ben j'ai vu ma faute en meme temps que vous m'avez répondu . merci beaucoup : pff:

  10. #9
    mehoul

    Re : Espérance d'une variable aléatoire a la puissance 4

    sinon, si tu n'aimes pas les intégrales, tu peux dériver 4 fois la fonction génératrice des moments, qui vaut dans le cas le la loi normale standard e^(t^2/2). C'est un peu laborieux mais on arrive aussi à 3 (il faut prendre la dérivée en zéro)

Discussions similaires

  1. comment déterminer une densité d'une variable qui est en fonction d'une autre variable
    Par kariminfo dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 11/09/2010, 20h30
  2. comment déterminer une densité d'une variable qui est en fonction d'une autre variable
    Par kariminfo dans le forum Mathématiques du supérieur
    Réponses: 7
    Dernier message: 04/09/2010, 20h40
  3. rang d'une variable aleatoire?
    Par GANOD dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 18/08/2009, 08h25
  4. Espérance d´une variable aléatoire
    Par Bartolomeo dans le forum Mathématiques du supérieur
    Réponses: 8
    Dernier message: 04/07/2009, 21h23
  5. espérance Carré d'une variable
    Par krokodiloff dans le forum Mathématiques du supérieur
    Réponses: 13
    Dernier message: 17/04/2009, 15h35