Bonjour
J'ai une fonction f continue de IR dans C de carré intégrable sur IR, et je dois montrer l'existance d'une suite de fonction (fn) continue a support compact (ie il existe un segment de IR en dehors duquel f est nulle), qui converge en moyenne quadratique vers f.
J'ai essayé de prendre fn(x)=f(x) sur [-n,n] affine sur [n,n+1/n] et nulle ensuite, mais je n'arrive pas à montrer la convergence quadratique vers f...
Si vous avez des idées...
merci!
Eric
-----