Nombres complexes
Répondre à la discussion
Page 1 sur 3 12 DernièreDernière
Affichage des résultats 1 à 30 sur 72

Nombres complexes



  1. #1
    invite233e59fa

    Exclamation Nombres complexes


    ------

    Bonjour tout le monde pendant les vacances, j'ai un devoir à rendre à faire sur les complexes mais je n'y comprend rien!

    Sujet:
    Pour tout nombre complexe z on pose:
    P(z)=z3+2(1-racine(3))z² + 4(1-racine(3))z+8
    Avec racine correspondant au racine carrée.

    1a/ Montrer que ¨(z)=(z+2)(z²-2*racine(3)z+4)
    1b/ Résoudre dans l'ensemble des nombres complexes l'équation P(z)=0

    2/On considére les nombres complexes suivants:
    Z0=-2
    Z1=racine(3)-i
    Z2=racine(3)+i

    Ecrire sous forme trigonométrique les nombres complexes suivants:
    Z0
    Z1
    Z2
    Z19
    Z21997/Z0Z1

    On donnera pour chaque nombre complexe son argument principal, c'est à dire l'argument élément de l'intervalle ]-pi ; pi]
    On écrira les modules sous la forme: an avec n entier nturel et aréel positif.

    Est ce que quelq'un peut m'aider s'il vous plait!

    -----

  2. #2
    invitee6dbc8ad

    Re : complexe

    Tu n'espères qd meme pas qu'on va le faire à ta place?? non mais!

    Tu as cherché j'imagine? Tu as donc du avoir quelques idées? Lesquelles?

    @pluche!

    PS: A la fin d'une question, on met un '?' et non un '!'...

  3. #3
    invite233e59fa

    Re : complexe

    Oui j'ai cherché!

    Mais la premiére question a/ J'ai rien compris et pour la partie b/
    je suis arrivé à 0=z3+2z²-2racine(3)z²-4racine(3)z+12
    Mais je suis pas sur que se soit bon!

    Aprés pour mettreen forme trigonométrique sa devrait aller mais celui qui me pose probléme c'est le calcul de Z21997/Z0Z1

    Si on pouvait m'aider pour ces trois question, je pense que je pourrais m'en sortir aprés!

  4. #4
    invitee6dbc8ad

    Re : complexe

    donc, pour la a...
    Dans cette situation, il est souvent plus simple de partir de l'expression qu'on nous donne, ici:
    P(z)=(z+2)(z²-2*racine(3)z+4)

    Développes (z+2)(z²-2*racine(3)z+4) et regardes ce que tu obtiens...

  5. A voir en vidéo sur Futura
  6. #5
    invite86822278

    Re : complexe

    Citation Envoyé par luca


    1a/ Montrer que
    Comment montrer que ces deux polynomes sont égaux... tu n'as vraiment pas d'idée ?

    [EDIT]... croisement avec Brikkhe...

  7. #6
    invitee6dbc8ad

    Re : complexe

    en LaTex, c'est encore plus visible (pour moi en tout cas! )

    [EDIT#4] en meme temps, ici, la fonction n'est pas compliquée, partir de l'une ou de l'autre revient au même...[/EDIT]

  8. #7
    invite233e59fa

    Re : complexe

    Justement j'ai dévelloper (z+2)(z²-2*racine(3)z+4)
    Et j'obtient
    P(z)=z3-2*racine(3)z²+4z + 2z²-4*racine(3)z+8

    Mais je n'en suis pas sur!

    Aprés pour montrer que les deux polynome sont égaux, je pense qu'en mettant: polynome1=polynome2 et en résolvant comme un équation classique, sa doit être possible, mais la je vais pas le faire car je suis sur à 98% que mon dévelloppement et faux!

  9. #8
    invite86822278

    Re : complexe

    Ton développement est juste.
    Tu n'as plus qu'à mettre ensemble tes facteurs en z², puis tes facteurs en z, pour arriver à ta première définition de P(x).

  10. #9
    invitee6dbc8ad

    Re : complexe

    Ne le prends pas mal mais tu n'essayes pas et tu ne cherches pas plus loin que le bout de ton nez ("j'esssaye pas, je suis sur d'avoir faux")... tu n'y arriveras jamais si tu continu avec cette méthode!

  11. #10
    invite233e59fa

    Re : complexe

    P(z)=z3-2*racine(3)z²+4z + 2z²-4*racine(3)z+8

    Alors j'ai factorisé mais je n'obtient pas le résultatvoulu :
    P(z)=z3-2*racine(3)z²+4z + 2z²-4*racine(3)z+8
    P(z)=z(z² - 2*racine(3)z + 4 - 4racine(3) + 4)
    P(z)=(z+2)[z²-2racine(3)z + 2 - 4racine(3)]

    Je n'arrive pas à me débarrassé de 4racine(3)
    Donc si on pouvait me donner un truc pour pouvoir dévelloper sa serait bien! Merci d'avance!

  12. #11
    invitebb921944

    Re : complexe

    P(z)=z3-2*racine(3)z²+4z + 2z²-4*racine(3)z+8
    P(z)=z(z² - 2*racine(3)z + 4 - 4racine(3) + 4)
    P(z)=(z+2)[z²-2racine(3)z + 2 - 4racine(3)]
    Tu es quand même en train d'essayer de retrouver l'expression que tu as développée juste avant et pour couronner le tout tu n'y arrives pas !

    P(z)=z3-2*racine(3)z²+4z + 2z²-4*racine(3)z+8
    Là tu te débrouilles pour avoir quelque chose de la forme :
    az^3+bz²+cz+d
    et tu vérifies après que les coefficients correspondent bien à la forme donnée.

  13. #12
    invite86822278

    Re : complexe

    Bon... le calcul est en effet faux des la premiere ligne...
    Une autre methode, si tu ne veux pas factoriser, consisterait à développer la première expression de P(x) et comparer les deux expressions.

  14. #13
    invite233e59fa

    Re : complexe

    déja je voudrait savoir si je pe ou non regorupé 2 et 2racine(3) si oui sa me simplifiré déja la vie!

  15. #14
    invite86822278

    Re : complexe

    Bien sûr !
    .......
    On va finir par y arriver !

  16. #15
    invite233e59fa

    Re : complexe

    Je vien de reprendre sa tranquillement
    P(z)=z3-2*racine(3)z²+4z + 2z²-4*racine(3)z+8
    P(z)=z3-2*racine(3)z²+2z²+4z-4*racine(3)z+8
    P(z)=z3 -2(1-racine(3))z²+4(z-racine(3)z+8

    Je croi que c'est bon puisque j'ai l'expression recherché!

    Merci à tous je vais essayé la deuxiéme question maintenant!

  17. #16
    invitee6dbc8ad

    Re : complexe

    Citation Envoyé par ginkoTA
    Bien sûr !
    .......
    On va finir par y arriver !
    euh... j'ai un gros doute la!!

    tu la tiens d'où la 1ere ligne dans ton message précédent?
    (cad celle-ci: P(z)=z3-2*racine(3)z²+4z + 2z²-4*racine(3)z+8)

    PS: tu as des signes différent dans l'équation que tu as par rapport à celle que tu veux obtenir au début... mais tu t'en moques, tu fais comme si de rien n'était... lol tu ferais un bon physicien!

  18. #17
    invite86822278

    Re : complexe

    Quelle première ligne ? (OK, merci)

    Sinon, luca, il y a un probleme de signe sur ton calcul du #15

  19. #18
    invitee6dbc8ad

    Re : complexe

    Citation Envoyé par luca
    Je vien de reprendre sa tranquillement
    P(z)=z3-2*racine(3)z²+4z + 2z²-4*racine(3)z+8
    celle-ci .

  20. #19
    invite233e59fa

    Re : complexe

    on veut P(z)=z3+2(1-racine(3))z² + 4(1-racine(3))z+8

    en partant de:
    P(z)=(z+2)(z²-2*racine(3)z+4)

    je dévellope et j'obtien:
    P(z)=z3-2*racine(3)z²+2z²+4z-4*racine(3)z+8

    je factorise en faisant attention aux signe cette fois:
    et je retrouve bien P(z)=z3+2(1-racine(3))z² + 4(1-racine(3))z+8

  21. #20
    invite86822278

    Re : complexe

    Bien. Plus qu'à passer au 1.b.

  22. #21
    invitee6dbc8ad

    Re : complexe

    résoudre l'une revient à résoudre l'autre (puisque tu viens de montrer qu'elles étaient égales) donc résouds (z+2)(...) ce sera plus simple...

    @pluche!

  23. #22
    invite233e59fa

    Re : complexe

    ok merci je vais essayer et je vous tiensau courants!

  24. #23
    invite233e59fa

    Re : complexe

    Alors(z+2)(z²-2racine(3)z+4)=0

    il faut que:
    z+2=0
    z=-2

    et
    z²-2racien(3)z+4=0
    z²-2racine(3)z=-4
    z²-z=-4/(2racine(3))
    z²-z=-4racine(3)/6
    z-z=racine(-4racine(3)/6)
    et donc la je suis bloqué j'aurais tendance à dire qu'il y a pas de solution mais je pense que c'est plutot une erreur de ma part!

  25. #24
    invite86822278

    Re : complexe

    Citation Envoyé par luca
    z²-2racine(3)z=-4
    z²-z=-4/(2racine(3))
    z²-z=-4racine(3)/6
    z-z=racine(-4racine(3)/6)
    ?????? Tu t'es relu ???
    Tu as un trinome du second degre. Tu n'as pas vu les discriminants ? (a priori si si tu travailles sur des complexes... alors utilise un discriminant !)

  26. #25
    invite233e59fa

    Re : complexe

    a oui exacte merci de me le faire remarquer!
    Je suis incorigible la dessus, j'y pense jamais enfin en cours de math seulement!

  27. #26
    invite233e59fa

    Re : complexe

    delta=b²-4ac
    delta=(2racine3)²-4*1*4
    delta=12-16
    delta=-4

    j'tulise donc la formule des x avec i
    D'ou:
    x1=[-b+i*racine(delta)]/2a
    x1=[-2racine(3)+i*racine(-4)]*2
    x1=-2racine(3)/2 + 2i/2
    x1=-racine(3)+i

    x=[-b-i*racine(delta)]/2a
    x1=[-2racine(3)-i*racine(-4)]*2
    x1=-2racine(3)/2 - 2i/2
    x1=-racine(3)-i

    Je viens d'essayer de calculer les racines mais j'appéle sa du bricolge caril mesemble que dans une racine, on ne peut pas avoir de signe - mais je ne sais pas comment m'en débarassé.

  28. #27
    invitee6dbc8ad

    Re : complexe

    c'est encore faux... je confirme, tu es "incorrigible"!

    -b ne fait pas puis que b= donc -b=...

    attendant ta prochaine erreur...

  29. #28
    invite86822278

    Re : complexe

    Citation Envoyé par luca
    x1=[-b+i*racine(delta)]/2a
    x1=[-2racine(3)+i*racine(-4)]*2
    Non, attention aux notations (au signe sur b aussi, mais je ne reviens pas dessus, ca a déjà était mentionné).
    Tu as trouvé . A ta place, je n'écrirai pas , en effet, la notation racine est en principe sous entendue comme allant des réels dans les réels.
    De plus, la racine de -4 est EGALE à 2i. Le mieux est donc de remplacer directement ta notation par 2i.

    De plus, la formule que tu donnes en première ligne est fausse. Que soit positif ou négatif ne change rien et tu dois continuer à avoir :
    Citation Envoyé par luca, correction
    Je te laisse reprendre... sans erreurs cette fois s'il te plaît... cours de maths ou pas cours de maths, un exo de maths reste un exo de maths...

  30. #29
    invitebb921944

    Re : complexe

    De plus, la racine de -4 est EGALE à 2i.
    J'aurais plutôt dit que c'est (2i)² qui est égal à -4

  31. #30
    invitee6dbc8ad

    Re : complexe

    lol! il a dit la racine de -4 est EGALE à 2i
    je crois qu'il y en a un qui aurait mieux fait de se taire...

    @pluche!

Page 1 sur 3 12 DernièreDernière

Discussions similaires

  1. Nombres complexes
    Par invite2ade688b dans le forum Mathématiques du collège et du lycée
    Réponses: 4
    Dernier message: 11/11/2007, 18h11
  2. Nombres complexes
    Par invite8494b429 dans le forum Mathématiques du collège et du lycée
    Réponses: 2
    Dernier message: 15/09/2007, 18h52
  3. nombres complexes
    Par invite308fead6 dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 03/12/2006, 17h30
  4. Nombres complexes
    Par invitebdd9f800 dans le forum Mathématiques du collège et du lycée
    Réponses: 2
    Dernier message: 17/09/2006, 09h46
  5. Nombres complexes - TS
    Par invite80baf0c8 dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 12/09/2005, 12h00