Répondre à la discussion
Affichage des résultats 1 à 5 sur 5

Séries de fonctions/Séries entières



  1. #1
    Cactuss

    Séries de fonctions/Séries entières

    Re-Bonjour tout le monde.

    je travail sur un exercice concernant les séries et plus particulièrement les séries entières. Voici l'exercice:
    exo2.jpg

    Question 1:
    J'ai obtenu comme rayon de convergence . On peut alors dire que la série converge simplement sur l'intervalle ]-R;R[ soit

    Jusque là tout va bien , et là c'est le drame...

    Question 2:
    On sait que
    D'où ma question, peut on dire que la série converge vers la valeur et si cela justifie la convergence normale sur .
    De plus, afin de répondre à la question 2, comment justifier que l'on ne converge pas normalement sur tout l’intervalle de R?

    Question 3 et 4:
    Je ne les ai pas encore traité mais si vous avez des indications je suis preneur

    Merci à tous,
    Cactuss

    -----


  2. Publicité
  3. #2
    topmath

    Re : Séries de fonctions/Séries entières

    Bonjour faut d'abord montrer s'il s’agit d'une Série entière ou non , puits passer au calcule du R rayon de convergence si cette dernière s’avère entière .

  4. #3
    Cactuss

    Re : Séries de fonctions/Séries entières

    Oui oui a je l'ai déjà fais.

    je bloque à la question 2 maintenant.

  5. #4
    Tryss

    Re : Séries de fonctions/Séries entières

    Citation Envoyé par Cactuss Voir le message
    Question 2:
    On sait que
    D'où ma question, peut on dire que la série converge vers la valeur et si cela justifie la convergence normale sur .
    De plus, afin de répondre à la question 2, comment justifier que l'on ne converge pas normalement sur tout l’intervalle de R?
    Non, ça ne justifie pas la convergence normale. Pour rappel, on dit que la série converge normalement sur I si

    et converge

    C'est à dire que l'on peut majorer chaque terme de la somme par un réel indépendant de x, tel que la somme des est convergente.

    Le plus simple pour montrer ici la non convergence normale sur R, c'est de remarquer que les ne sont pas bornées sur R, donc il n'est pas possible que la série soit normalement convergente (la suite n'existe pas)


    Par contre sur [-A,A], on a la majoration , ce qui permet de conclure assez directement à la convergence normale.

    Et cette méthode permet aussi de répondre à la question 3)

  6. #5
    Cactuss

    Re : Séries de fonctions/Séries entières

    Merci beaucoup pour tes explications Tryss.

    Pour conclure sur la question 2 il faut alors que je dise:
    La série des sup de fn converge normalement si tout |fn| sont majorables,
    c'est à dire que pour [-A;A], on a la majoration suivante: ,

    On a donc tends vers e^A quand n tend vers .

    Et donc que la série CVN sur [-A;A].

  7. A voir en vidéo sur Futura

Sur le même thème :

Discussions similaires

  1. Séries Entières
    Par JoOoO dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 04/10/2011, 02h36
  2. Séries entières
    Par math123 dans le forum Mathématiques du supérieur
    Réponses: 14
    Dernier message: 21/02/2011, 11h45
  3. séries de fonctions et séries entières
    Par fifrelette dans le forum Mathématiques du supérieur
    Réponses: 13
    Dernier message: 06/02/2010, 16h18
  4. séries entières et suites de fonctions
    Par aurk dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 05/01/2009, 14h49
  5. Définition séries de Taylor, séries entières
    Par jeanmi66 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 23/06/2008, 16h40