Répondre à la discussion
Affichage des résultats 1 à 10 sur 10

Fonction périodique et extremum global



  1. #1
    lauren7878

    Fonction périodique et extremum global


    ------

    Bonsoir, je voulais savoir si toute fonction continue et périodique sur R admettait au moins un extremum global sur R.

    Merci d'avance

    -----

  2. Publicité
  3. #2
    invite52487760

    Re : Fonction périodique et extremum global

    Salut :

    Il me semble que la réponse est oui, et qu'il faut utiliser peut être le théorème de Rolle.

    Cordialement.
    Dernière modification par chentouf ; 20/10/2015 à 22h01.

  4. #3
    phys4

    Re : Fonction périodique et extremum global

    Bonsoir,

    Si la fonction est periodique, il est donc possible de considérer une seule période, c'est alors une fonction continue sur une intervalle borné. Dans ces conditions il existe au moins un extremum, et comme la fonction est périodique il est identique sur toutes les périodes.
    Qu'en pensez vous ?
    Comprendre c'est être capable de faire.

  5. #4
    invite52487760

    Re : Fonction périodique et extremum global

    Le théorème de Rolle ne s'applique malheureusement qu'aux fonctions dérivables, il existe des fonctions continues, mais nulle-part dérivables à ma connaissance, et donc, le théorème de Rolle ne s'applique pas dans ce cas là. Je m'excuse pour cette bourde que j'ai proféré.
    Cordialement.

    Edit : Regarde ici : https://fr.wikipedia.org/wiki/Foncti...d%C3%A9rivable
    Dernière modification par chentouf ; 20/10/2015 à 22h12.

  6. A voir en vidéo sur Futura
  7. #5
    phys4

    Re : Fonction périodique et extremum global

    Je pense que l'on a besoin du théorème de Rolle, celui ci suffit et il s'applique aux fonctions continues bornées :

    https://fr.wikipedia.org/wiki/Th%C3%...8me_des_bornes
    Comprendre c'est être capable de faire.

  8. #6
    invite52487760

    Re : Fonction périodique et extremum global

    Salut phys4 :

    C'est vrai ça ... ? Le théorème de Rolle s'applique -t-il aux fonctions continues bornées ? Je n'ai pas trouvé ça sur le lien que tu as mis çi - dessus.

    Cordialement.

  9. Publicité
  10. #7
    phys4

    Re : Fonction périodique et extremum global

    Non pour Rolle, il faut que la fonction soit dérivable, mais ce théorème concerne l'existence d'une dérivée nulle.

    Pour la fonctions bornée il suffit que la fonction soit continue c'est le théorème des bornes ( Weierstrass)
    Comprendre c'est être capable de faire.

  11. #8
    lauren7878

    Re : Fonction périodique et extremum global

    Comment je fais pour montrer que c'est vrai du coup ?

  12. #9
    phys4

    Re : Fonction périodique et extremum global

    Je pense qu'il faut appliquer le théorème sur un intervalle borné d'une période, car il n'est pas valable sur un intervalle non borné.
    Comprendre c'est être capable de faire.

  13. #10
    Tryss2

    Re : Fonction périodique et extremum global

    Si f est T periodique et continue, alors la restriction de f à [0,T] est bornée et atteint son maximum. Notons a un point ou elle atteint son maximum.

    Alors comme f est T periodique, quelque soit x réel, et . (c'est juste le reste de la division euclidienne de x par T)

    Ainsi,

    et f(a) est donc le maximum de f

Discussions similaires

  1. Extremum global
    Par artemis16 dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 04/11/2014, 19h31
  2. extremum global
    Par St_Nuit dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 01/06/2011, 22h47
  3. Extremum d'une fonction composée ?
    Par Maki66 dans le forum Mathématiques du collège et du lycée
    Réponses: 6
    Dernier message: 18/10/2010, 13h27
  4. extrémum d'une fonction
    Par samtv399 dans le forum Mathématiques du collège et du lycée
    Réponses: 6
    Dernier message: 16/11/2008, 23h26
  5. Extremum d'une fonction
    Par zolom dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 24/06/2007, 09h23