Bonsoir à tous,
- J'ai besoin qu'on m'indique un cours qui porte sur le sujet suivant ( même en anglais ) :
If is any morphism, with smooth and one-dimensional, then is flat over as long as no component of ( either irreducible or embedded ) is supported on the fiber
Suppose that is an arbitrary morphism from a variety to a -dimensional smooth variety , and is a point. We define the limit of the family to be the fiber over in the closure . In these terms, the statement above says that a morphism to any smooth, one-dimensional target is flat if and only if every fiber is equal to the limit
- Pouvez vous m'expliquer ce qu'on entend formellement par ce passage :
If is any morphism, with smooth and one-dimensional, then is flat over as long as no component of ( either irreducible or embedded ) is supported on the fiber
Merci d'avance
-----