Répondre à la discussion
Affichage des résultats 1 à 14 sur 14

matrices par blocs



  1. #1
    AsmaSasuki

    Lightbulb matrices par blocs


    ------

    Salut, svp comment Déterminer la dimension de l’espace
    {B appartient à Mn(R)/ABA = On} ils ont trouvé une matrice par blocs puis ils ont conclu que le dimension est n^2-r^2
    ce que j'avais pas compris d'où vient il n^2-r^2 à partir de la matrice bloc
    expliquez moi et merci d'avance

    -----

  2. Publicité
  3. #2
    gg0

    Re : matrices par blocs

    Doublon !!!

  4. #3
    AsmaSasuki

    Re : matrices par blocs

    Citation Envoyé par gg0 Voir le message
    Doublon !!!
    svp j'ai pas compris est ce que cette question est déjà traité ou quoi? si oui donnez moi le lien ; et merci d'avance

  5. #4
    gg0

    Re : matrices par blocs

    C'est toi qui a envoyé deux fois le même message. l'autre a été supprimé par Médiat.

    N'importe comment, l'énoncé est très incomplet, et tu fais référence à une preuve qu'on n'a pas ! Même si c'est l'époque, ne crois pas au père Noêl ! On ne sait pas ce qui se passe dans ta tête, on n'a que ce que tu écris.

    Cordialement.

  6. #5
    AsmaSasuki

    Lightbulb Dimension de l’espace des matrices

    Salut, svp comment Déterminer la dimension de l’espace
    {B appartient à Mn(R)/ABA = On} ils ont trouvé une matrice par blocs puis ils ont conclu que le dimension est n^2-r^2
    ce que j'avais pas compris d'où vient il n^2-r^2 à partir de la matrice bloc
    expliquez moi et merci d'avance

  7. A voir en vidéo sur Futura
  8. #6
    minushabens

    Re : Dimension de l’espace des matrices

    r est le rang de A?

  9. Publicité
  10. #7
    AsmaSasuki

    Re : matrices par blocs

    l'énoncé est Déterminer la dimension de l’espace
    {B appartient à Mn(R)/ABA = On}

  11. #8
    AsmaSasuki

    Re : matrices par blocs

    avec A appartient Mn(R) de rang r

  12. #9
    gg0

    Re : Dimension de l’espace des matrices

    Encore un doublon !
    AsmaSasuki, ça fait trois fois le même message, alors que c'est interdit !!!

  13. #10
    AsmaSasuki

    Re : Dimension de l’espace des matrices

    oui éxactement

  14. #11
    AsmaSasuki

    Re : Dimension de l’espace des matrices

    Citation Envoyé par minushabens Voir le message
    r est le rang de A?
    Avec A appartient à Mn(R) du rang r
    svp aidez moi, et merci d'avance

  15. #12
    minushabens

    Re : Dimension de l’espace des matrices

    Si r=n A est inversible et ABA=0 si et seulement si B=0 donc cet espace est de dimension 0 et la formule est correcte.
    Si r=0 A=0 et ABA=0 est toujours vrai, l'espace est de dimension n et la formule est encore correcte.
    Il te reste à traiter les autres cas

  16. Publicité
  17. #13
    AsmaSasuki

    Re : Dimension de l’espace des matrices

    Citation Envoyé par minushabens Voir le message
    Si r=n A est inversible et ABA=0 si et seulement si B=0 donc cet espace est de dimension 0 et la formule est correcte.
    Si r=0 A=0 et ABA=0 est toujours vrai, l'espace est de dimension n et la formule est encore correcte.
    Il te reste à traiter les autres cas
    oui il reste juste un seul cas où r<n et on va trouver dimension égale à n^2-r^2 , je me suis dit qu'ils ont utilisé le théorème du rang mais je n'arrive pas à comprendre d'où vient il r^2

  18. #14
    minushabens

    Re : Dimension de l’espace des matrices

    tu es sûr que ce n'est pas A'BA=0 (A'=transposée de A)

    Si c'est le cas, il te faut en effet mettre A sous la forme d'une matrice triangulaire par blocs, avec un bloc diagonal de taille (n-r)x(n-r) nul. Ca se fait en choisissant une base du noyau (qui est de dimension n-r) et en la complétant.

Sur le même thème :

Discussions similaires

  1. Matrice par blocs
    Par lotto dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 11/06/2013, 14h35
  2. Déterminant par blocs
    Par ydethe dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 15/06/2010, 19h12
  3. Hyperplan de l'espace des matrices carrées et matrices inversibles
    Par Seirios dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 03/04/2010, 17h41
  4. si schémas blocs
    Par sandalk dans le forum Physique
    Réponses: 0
    Dernier message: 06/11/2007, 10h15