Problème de primitive
Répondre à la discussion
Affichage des résultats 1 à 10 sur 10

Problème de primitive



  1. #1
    invitea86adc00

    Problème de primitive


    ------

    Bonsoir.
    Je suis étudiant en première année de prépa intégrée et je bute sur une primitive d'un DM.
    La voici :

    ∫ (x*ln(x))/(1+x^2)^2 dx

    Pourriez-vous m'indiquer comment procéder s'il vous plait ?

    Cordialement.
    Bleshift

    Ps:désolé je ne sais pas me servir de l'écriture mathématique sur ordinateur...

    -----

  2. #2
    Médiat

    Re : problème de primitive....

    Bonjour,

    Une intégration par partie devrait vous sauter aux yeux
    Dernière modification par Médiat ; 04/06/2016 à 23h32.
    Je suis Charlie.
    J'affirme péremptoirement que toute affirmation péremptoire est fausse

  3. #3
    invitea86adc00

    Re : problème de primitive....

    Bonsoir et merci beaucoup mais j'essaie mais je n'arrive pas à avoir une jolie expression, l'intégrale qui apparait dans l'intégration par partie est toujours assez horrible ...
    Suis-je sur la bonne piste si en intégrant par partie je scinde le carré en deux pour avoir un:

    x/(1+x^2) dérivée de arctanx multiplié par ln(x)/(1+x^2) ?

  4. #4
    invite57a1e779

    Re : problème de primitive....

    Bonjour,

    L'intégration par parties sert à se débarrasser du logarithme. Il ne reste plus qu'une fraction rationnelle que l'on décompose en élément simples pour pouvoir la primitiver.

  5. A voir en vidéo sur Futura
  6. #5
    invitea86adc00

    Re : problème de primitive....

    Pardon, 1/(1+x^2) et xln(x)/(1+x^2) *

  7. #6
    invite57a1e779

    Re : problème de primitive....

    On intègre par parties en dérivant et en primitivant

  8. #7
    invitea86adc00

    Re : problème de primitive....

    D'accord, merci beaucoup !

    Bonne soirée.
    Blueshift

  9. #8
    invitea86adc00

    Re : problème de primitive....

    Re-bonsoir, excusez moi mais je n'arrive vraiment pas à intégrer x/(1+x^2)^2

    Est-ce que vous pourriez m'aidez svp ?

    Cordialement.
    Blueshift

    Ps: nous n'avons pas encore eu le temps de faire des exercices sur ce genre d'intégrales...

  10. #9
    invite57a1e779

    Re : problème de primitive....

    A un facteur -2 près, c'est une forme -u'/u^2…

  11. #10
    invitea86adc00

    Re : Problème de primitive

    Ah oui ! Je suis trop bête merci beaucoup !

    Bonne soirée,
    Cordialement.

    Blueshift

Discussions similaires

  1. Problème Primitive
    Par invitee1c61d6f dans le forum Mathématiques du collège et du lycée
    Réponses: 6
    Dernier message: 11/05/2012, 08h36
  2. problème de primitive!
    Par invitee2afec7f dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 31/12/2011, 11h15
  3. problème de primitive
    Par invite5ca1c643 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 05/06/2007, 19h24
  4. problème primitive
    Par invite0052996b dans le forum Mathématiques du collège et du lycée
    Réponses: 4
    Dernier message: 14/01/2007, 00h02
  5. Primitive : Probléme !
    Par invitef1cdeb87 dans le forum Mathématiques du supérieur
    Réponses: 14
    Dernier message: 28/02/2006, 02h06