Loi de composition interne sur [0;1[
Répondre à la discussion
Affichage des résultats 1 à 2 sur 2

Loi de composition interne sur [0;1[



  1. #1
    invitefd4e7c09

    Loi de composition interne sur [0;1[


    ------

    Bonjour,

    Imaginons que nous puissions voir les décimales d'un nombre réel comme une suite de nombres dont l'ensemble des valeurs de la suite est et ou chacune de ces décimales possède un rang (le rang est attribué à la première décimale, le rang est attribué à la deuxième décimale etc...)
    Il s'en suit qu'à chaque réel , je peux ainsi associer une suite de nombres rangés du rang , au rang .
    Par exemple, la constante Oméga : est ainsi associée à la suite de nombres
    Imaginons à présent qu'à chacun des termes de cette suite on fasse correspondre le terme . Nous créons alors une seconde suite engendrée par et telle que chacun des termes .
    Il est alors possible de déterminer chacun des termes de la suite :
    et on fait correspondre au nombre le terme
    et on fait correspondre au nombre le terme
    et on fait correspondre au nombre le terme
    et on fait correspondre au nombre le terme
    ...
    La suite engendrée par est donc
    Il est alors possible d'associer à la suite un réel

    Pour corser l'affaire, je fixe deux règles supplémentaires :

    1/ Tout terme de la suite ne peut servir qu'une seule et unique fois pour engendrer un terme de la suite . Lorsque le terme à été utilisé, le terme
    exemple : est associé à la suite
    Il est possible de déterminer chacun des termes de la suite ainsi :
    appelle le terme de rang à savoir donc
    appelle le terme de rang mais ce terme à déjà été utilisé donc l'appel se fait sur le terme de rang (concaténation de et de ) à savoir donc mais à été engendré par le terme
    appelle le terme de rang mais ce terme à déjà été utilisé donc l'appel se fait sur le terme de rang mais ce terme à déjà été utilisé également donc l'appel se fait sur le terme de rang (concaténation de et et ) à savoir donc mais à été engendré par le terme

    2/ Tout nombre décimal servant de base pour créer la suite ne sera jamais écrit sous la forme d'un développement décimal impropre
    exemple : mais ne s'écrira jamais sous la forme impropre :

    Dans la pratique, la détermination des termes de la suite se fait directement à partir de la lecture des décimales du réel auquel on associe la suite .

    Exemples :
    1)
    En lisant de gauche à droite les décimales du réel, il vient :
    appelle la 6eme décimale à savoir
    appelle la 8eme décimale à savoir
    appelle la 73eme décimale à savoir
    appelle la 2eme décimale à savoir
    appelle la 57eme décimale à savoir
    appelle la 7eme décimale à savoir
    appelle la 5eme décimale à savoir
    appelle la 10eme décimale à savoir
    appelle la 1ere décimale à savoir
    appelle la 16eme décimale à savoir
    ...
    La suite à laquelle j'associe le réel

    2)
    En lisant de gauche à droite les décimales du réel, il vient :
    appelle la 2e décimale à savoir
    appelle la 5e décimale à savoir
    appelle la 15e décimale à savoir
    appelle la 3e décimale à savoir
    appelle la 14e décimale à savoir
    appelle la 6e décimale à savoir
    appelle la 7e décimale à savoir
    ...
    La suite à laquelle j'associe le réel

    Il est donc possible (avec les règles données ci-dessus) de transformer un nombre réel en un nombre réel . Cette transformation (opération) sera notée # et définie sur l'intervalle

    Mais s'il est possible d'appeler les décimales d'un réel dans l'ordre de ses propres décimales, il est également possible d'appeler les décimales d'un réel dans l'ordre des décimales d'un autre réel .
    Dans tous les exemples précédents le réel de sorte que l'opérande appelant était la même que l'opérande appelé : #
    Prenons l'exemple de deux opérandes et inégaux et appelons # l'opération consistant à transformer les décimales de dans l'ordre de . Une telle opération sera notée # avec l'opérande appelant et l'opérande appelé.
    Par convention, tout opérande positionné à gauche de l'opération # est l'opérande appelant et tout opérande positionné à droite de l'opération # est l'opérande appelé :
    (opérande appelant dont les décimales forment la suite des nombres pairs)
    (opérande appelé)
    #

    Si le résultat d'une telle opération donne nécessairement un nombre appartenant à l'intervalle unité alors l'opération # constitue une loi de composition interne dans la mesure ou elle associe à deux éléments de un élément de ce même ensemble .
    Le couple (I,#) serait alors par définition un magma dont les propriétés restent à explorer

    En espérant ne pas avoir écrit trop de bêtises, n'hésitez pas à me corriger ou à me solliciter sur certains points que j'ai mal rédigé.

    -----

  2. #2
    invitefd4e7c09

    Re : Loi de composition interne sur [0;1[

    Concernant la loi de composition notée "#", une curiosité consiste à prendre un réel et à calculer de manière itérative :
    #
    puis #
    puis #
    puis #
    etc ...
    Formellement, on s'intéresse donc à la suite définie par
    Une telle suite "converge" vers un élément absorbant (défini plus haut) ou vers une forme tronquée de la constante de Champernowne (divisée par dix) ou "diverge" vers une structure répétitive du type en alternance avec à partir d'un certain .
    Cette curiosité fait écho à tous les résultats connus sur les suites ou séries convergentes ou divergentes.

Discussions similaires

  1. loi de composition interne
    Par invite2553d661 dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 11/04/2013, 21h44
  2. Loi de Composition Interne
    Par invite625ca7d1 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 17/12/2010, 22h53
  3. Loi de composition interne
    Par invite1769d77f dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 27/11/2009, 12h37
  4. Loi de composition interne
    Par invite1769d77f dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 22/11/2009, 19h09
  5. loi de composition interne
    Par invitec314d025 dans le forum Mathématiques du supérieur
    Réponses: 7
    Dernier message: 20/04/2005, 19h22