Répondre à la discussion
Affichage des résultats 1 à 2 sur 2

Semi-groupe

  1. #1
    zarake

    Semi-groupe

    Bonjour à tous,

    Il existe le théorème suivant à propos des semi-groupes:

    "Tout semi-groupe fini est un groupe (Jean Armand de Séguier 1904)"

    Malheureusement je ne trouve pas la démonstration

    Quelqu'un l'aurait il ?

    Cordialement

    -----


  2. #2
    Médiat

    Re : Semi-groupe

    Bonjour,

    Dans un semi-groupe, si vous considérez un élément a (quelconque) et la fonction qui à x fait correspondre ax, il est facile de montrer que c'est une injection (un semi-groupe est régulier) donc une bijection (on parle de semi-groupe fini), il existe donc un x tel que ax = 1
    Dernière modification par Médiat ; 01/07/2017 à 17h19.
    Je suis Charlie.
    J'affirme péremptoirement que toute affirmation péremptoire est fausse

Discussions similaires

  1. Semi-groupe
    Par momoyoyo10 dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 18/12/2015, 21h29
  2. Semi-groupe de Schrödinger
    Par IanCurtis89 dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 13/03/2014, 20h56
  3. semi groupe
    Par Gumus07 dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 17/04/2013, 10h29
  4. groupe semi-simple
    Par oboro dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 14/02/2009, 14h26
  5. Produit semi direct de groupe Dn = C2xCn
    Par loicus dans le forum Mathématiques du supérieur
    Réponses: 8
    Dernier message: 07/02/2006, 06h49