Énigme de probabilité
Répondre à la discussion
Affichage des résultats 1 à 17 sur 17

Énigme de probabilité



  1. #1
    invite7594bfcb

    Énigme de probabilité


    ------

    Voila on a 3 verres , dans chaque verres y'a 5 balles le 1 er verres il y'a 4 noir 1 blanche dans le 2 eme y'a 4 blanche 1 noir et dans le 3 eme y'a 3 blanche et 2 noir . avant de prendre une balle d'un verre il faut lancer un dé si tu obtiens 1-2-3 tu prend du 1 er verre si tu obtiens 4-5 tu prend du 2 eme verre si tu obtiens 6 tu prend du 6 eme verre
    Question : un homme a lancer un dé il est tombe sur X chiffre et il a pris une balle noir du Xeme verre , de quel verre il a pris la balle noir ?

    -----

  2. #2
    invite9dc7b526

    Re : Énigme de probabilité

    Bonjour,

    il faut pour résoudre ce problème écrire les probabilités conditionnelles d'avoir choisi le verre k (pour k=1,2,3) sachant qu'on a tiré une boule noire. On connaît les probabilités conditionnelles P(noir | verre k) et les probabilités de tirer le verre k. Il faut écrire les définitions des probabilités conditionnelles et voir comment on passe de P(A|B) à P(B|A) (c'est le théorème de Bayes).

  3. #3
    invite51d17075
    Animateur Mathématiques

    Re : Énigme de probabilité

    je trouve ta réponse un peu complexe dans sa présentation.
    On sait qu'il a tiré une noire dans l'énoncé.
    il a 1 chance sur 2 de tomber sur le premier verre ( n°, 1;2;3 ) et dans ce cas 4 chances sur 5 de tomber sur une noire.
    la proba que ce soit le 1er verre est donc bêtement 2/5. ( (1/2)(4/5))
    on peut faire de même avec les autres verres et en déduire la proba globale d'avoir tiré une noire. P(N)
    on peut aussi le faire avec les blanches et vérifier facilement que P(B)+P(N)=1

  4. #4
    gg0
    Animateur Mathématiques

    Re : Énigme de probabilité

    Bonjour DjDjalilo.

    Tel qu'est écrit l'énoncé, la réponse est "du premier". En effet, on dit qu'il a eu le chiffre X avec le dé, et que X est le numéro du verre. Comme 2, 3, 4, 5 et 6 ne font pas tomber dans le verre de même numéro, c'est que X=1.

    Mais ce n'est pas une question de probabilités.

    Cordialement.

  5. A voir en vidéo sur Futura
  6. #5
    invite51d17075
    Animateur Mathématiques

    Re : Énigme de probabilité

    oui c'est mal écrit avec ses X ! j'ai essayé d'interpréter son énoncé afin qu'il ait un sens.

  7. #6
    gg0
    Animateur Mathématiques

    Re : Énigme de probabilité

    C'est sûr qu'en changeant l'énoncé, on peut faire un exercice de probas. Mais même en changeant le deuxième X en Y, on n'a toujours pas une question de probas, et la réponse devient "dans un des 3".

    Je pense que faire comprendre au poseur de question qu'une suite de mots pris au hasard dans un énoncé n'est pas une question et primordial. A quoi sert de donner une réponse à quelqu'un qui ne se rend même pas compte de ce qu'il écrit. Et ce n'est pas une question de manipulation du français !
    Et je soupçonne ("énigme") que c'est une fausse énigme et un vrai énoncé.

    Attendons le retour de DjDjalilo.

    Cordialement.

  8. #7
    invite51d17075
    Animateur Mathématiques

    Re : Énigme de probabilité

    Citation Envoyé par gg0 Voir le message
    Et je soupçonne ("énigme") que c'est une fausse énigme et un vrai énoncé.
    Attendons le retour de DjDjalilo.
    .
    D'accord sur les deux points.

  9. #8
    invite7594bfcb

    Re : Énigme de probabilité

    En effet désolé je voulais dire chiffre X ( c'est a dire soit 1,2,3,4,5,6 et le verre Y soit 1,2,3 merci de vos retours

  10. #9
    invite7594bfcb

    Re : Énigme de probabilité

    Et pour info je suis pas français j'ai essayer de mon mieux pour traduire : / dsl

  11. #10
    invite51d17075
    Animateur Mathématiques

    Re : Énigme de probabilité

    ce n'est pas encore bien présenté, car à la lecture du texte, le verre est automatiquement déduit du chiffre du dé, donc ce n'est pas une variable du même ordre que X,
    et la question finale devrait être : quelle est la probabilité que ce soit tel verre ? et non "de quel verre s'agit il?"

  12. #11
    gg0
    Animateur Mathématiques

    Re : Énigme de probabilité

    Oui,

    il y a à priori dans l'énoncé initial une question de probabilité. pas dans l'énoncé traduit.

    Cordialement.

  13. #12
    invite7594bfcb

    Re : Énigme de probabilité

    Enfaite la question est belle est : de quel verre il a tiré la boule noir parceque si on va calculé on va trouver que un de c 3 verres sa propba egal a 0.97 donc 97% donc on peut supposer que c de verre ( ≈ 100 % )

  14. #13
    invite51d17075
    Animateur Mathématiques

    Re : Énigme de probabilité

    Citation Envoyé par DjDjalilo Voir le message
    Enfaite la question est belle est : de quel verre il a tiré la boule noir parceque si on va calculé on va trouver que un de c 3 verres sa propba egal a 0.97 donc 97% donc on peut supposer que c de verre ( ≈ 100 % )
    ??????? d'où sort cet énoncé, si ce sont les mots utilisés.
    et d'où sort ce chiffre de 97% ?
    peut on avoir lecture du corrigé ?

  15. #14
    gg0
    Animateur Mathématiques

    Re : Énigme de probabilité

    C'est une bizarre façon de considérer les probabilités. Avec ce genre de raisonnement personne ne gagne au Loto, le PSG foot ne perd aucun match, le Togo n'existe pas (moins de 3% de la population mondiale) etc.

  16. #15
    invite7594bfcb

    Re : Énigme de probabilité

    Le probleme c que je cherche le corrigé c pour sa je vous demande mais ok je vais reformulé ma question : de quel verre il a retirer la boule noir ( le verre le plus probable ) avec cmb de taux de chance ?

  17. #16
    invite51d17075
    Animateur Mathématiques

    Re : Énigme de probabilité

    il me semble t'avoir donné les indications ( post #3 ) pour calculer la probabilité de chaque verre.( dans le cas d'une boule noire )

  18. #17
    gg0
    Animateur Mathématiques

    Re : Énigme de probabilité

    Voir et appliquer la formule de Bayes.
    Ici, avec A="tirage dans le premier verre", B="tirage dans le deuxième verre", C="tirage dans le troisième verre", N="tirage d'une noire".
    La probabilité qu'on ait tiré dans le premier verre est P(A/N).

    Cordialement.

Discussions similaires

  1. [Probabilité] Fonction génératrice et probabilité conditionnelle
    Par invite3d8f65ca dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 20/01/2017, 10h28
  2. [ENIGME] L'énigme la plus difficile au MONDE
    Par invitee3c684e9 dans le forum Science ludique : la science en s'amusant
    Réponses: 56
    Dernier message: 29/06/2016, 16h24
  3. exercices probabilité, loi de probabilité T.S
    Par invite8355669c dans le forum Mathématiques du collège et du lycée
    Réponses: 13
    Dernier message: 01/05/2014, 19h25
  4. Petite enigme grosse migraine et probabilité
    Par invited02fbe76 dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 30/10/2010, 07h11