Répondre à la discussion
Affichage des résultats 1 à 7 sur 7

sous groupe d'un groupe abélien libre



  1. #1
    frjulien

    sous groupe d'un groupe abélien libre


    ------

    Bonjour
    On veut montrer qu'un groupe abélien libre admet des sous-groupes d'indice n, pour tout entier n positif.
    Merci d'avance pour vos idées dans ce sujet.

    -----
    Dernière modification par albanxiii ; 01/10/2018 à 10h21. Motif: typo titre

  2. Publicité
  3. #2
    Tryss2

    Re : sous groupe d'un groupe abelian libre

    Soit un élément d'une base de , ton groupe abélien libre. Alors (où F est l'ensemble des combinaisons linéaires à coefficient relatifs des autres éléments de la base)

    Que penser de ?
    Dernière modification par Tryss2 ; 30/09/2018 à 00h20.

  4. #3
    frjulien

    Re : sous groupe d'un groupe abelian libre

    Bonjour
    Il est clair que n Z.a + F est bien un sous groupe de G avec n entier positif.
    Comment justifier que l'indice du sous groupe vaut n .
    Merci pour votre idee.

  5. #4
    Tryss2

    Re : sous groupe d'un groupe abelian libre

    Tu peux revenir à la définition : En notant , tu montres que forme une partition de G. Donc tu as exactement n classes à gauche : H, a+H, 2a+H, ... (n-1)a+H

  6. #5
    Seirios

    Re : sous groupe d'un groupe abelian libre

    Ou alors, comme tout sous-groupe d'un groupe abélien est distingué, tu peux regarder le cardinal du quotient.
    If your method does not solve the problem, change the problem.

  7. A voir en vidéo sur Futura
  8. #6
    Tryss2

    Re : sous groupe d'un groupe abelian libre

    Effectivement, ça n'est pas beaucoup plus couteux de montrer que G/H est isomorphe à Z/nZ (d'autant que c'est pour ça que j'ai choisi/construit H)

  9. Publicité
  10. #7
    frjulien

    Re : sous groupe d'un groupe abelian libre

    Merci beaucoup pour vos idees.

Sur le même thème :

Discussions similaires

  1. Ordre d'un sous groupe du groupe symétrique S81
    Par Barabin dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 27/05/2013, 20h44
  2. sous-groupe distingué et groupe quotient
    Par curieux-man dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 03/11/2012, 23h47
  3. Caractères d'un groupe fini - sous groupe de C*
    Par fulliculli dans le forum Mathématiques du supérieur
    Réponses: 14
    Dernier message: 25/03/2011, 22h58
  4. Sous groupe d'un groupe commutatif
    Par Suzanna dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 10/02/2007, 13h23