Equation à résoudre
Répondre à la discussion
Affichage des résultats 1 à 9 sur 9

Equation à résoudre



  1. #1
    invite5d837d9d

    Equation à résoudre


    ------

    Bonjour,

    Je suis tombé récemment sur une équation dont je trouve pas la solution. Si vous avez la possibilité de m'aider, je suis preneur.

    La voici :

    A*R^x + B*T^x = 1

    avec :
    R, T réels positifs
    A, B réels
    x l'inconnue.

    En vous remerciant d'avance.

    -----

  2. #2
    mehdi_128

    Re : Equation à résoudre

    Salut passe au logarithme.

  3. #3
    invite5d837d9d

    Re : Equation à résoudre

    Merci pour ta réponse.

    Mais passer au logarithme ne m'avance pas car je ne vois pas comment sortir de Log(m+n) = ?

  4. #4
    invite51d17075

    Re : Equation à résoudre

    bjr,
    passage à l'exponentielle de la formule...pas au log

  5. A voir en vidéo sur Futura
  6. #5
    gg0
    Animateur Mathématiques

    Re : Equation à résoudre

    Bonjour.

    J'ai bien peur qu'il n'y ait aucun calcul algébrique pour trouver les solutions, sauf pour des cas particuliers de valeurs de R et T.
    Il y a deux cas évidents :
    * A<0 et B<0 : pas de solution
    * R=T #1 : x = -ln(A+B)/ln(R) (si R=T=1, l'équation se traite aussi )

    Cordialement.
    Dernière modification par gg0 ; 19/05/2020 à 15h02.

  7. #6
    gg0
    Animateur Mathématiques

    Re : Equation à résoudre

    NB : la proposition de Mehdi est du n'importe quoi, comme souvent chez lui. "passe au logarithme" n'a aucun sens ici.
    Désolé Mehdi, tu viens de rater le capes, une faute comme ça ne pardonne pas.

  8. #7
    invite5d837d9d

    Re : Equation à résoudre

    Merci !

    Oui, effectivement je me doutais qu'aucune solution algébrique était la réponse (même des fonctions d'analyse plus avancées ?).

    Par contre, je peux compléter avec le domaine de variation de R et T.

    R et T appartiennent à [1 ; 1+h] où h varie de 0 à 0,2.
    R et T peuvent être égaux dans certains cas.

  9. #8
    gg0
    Animateur Mathématiques

    Re : Equation à résoudre

    Egaux, tu l'as vu, ne pose pas de problème. S'ils sont presque égaux, on peut trouver une approximation plus ou moins grossière de la solution en les prenant égaux. par exemple pour 2*1,02^x+3*1,021^x=1, le calcul de -ln(A+B)/ln(R) donne environ -81, et la seule solution est d'environ 79.

    Mais si A et B sont de signes contraires, il peut y avoir 2 solutions.

    Cordialement.

  10. #9
    invite5d837d9d

    Re : Equation à résoudre

    En revérifiant, on peut affirmer que A et B sont positifs.

    Et si on dit que on pose R = T + k, avec k petit. Peut-on approximer une solution algébrique plus précise ?

    A*(T+k)^n+B*T^n=1

Discussions similaires

  1. Equation à résoudre
    Par invite57a0da87 dans le forum Mathématiques du collège et du lycée
    Réponses: 9
    Dernier message: 09/01/2012, 21h29
  2. résoudre l'equation
    Par invite831b6b8d dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 14/09/2010, 20h13
  3. résoudre l'équation X^2 - X - 2 =0
    Par invitea0f026cc dans le forum Mathématiques du collège et du lycée
    Réponses: 3
    Dernier message: 16/04/2009, 11h25
  4. Résoudre équation
    Par invite2bc4fc74 dans le forum Mathématiques du collège et du lycée
    Réponses: 9
    Dernier message: 03/03/2008, 21h54
  5. Résoudre équation
    Par inviteb8c83e21 dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 09/07/2005, 10h25