resonance en tension RLC serie
Répondre à la discussion
Affichage des résultats 1 à 9 sur 9

resonance en tension RLC serie



  1. #1
    invite6243ff93

    resonance en tension RLC serie


    ------

    bonjour
    j'essaie de suivre la démo de mon bouquin permettant de retrouver la courbe représentant le déphasage en fonction de la pulsation pour un circuit RLC serie en m'interessant à la resonance de la tension aux bornes du condensateur.
    c'est le déphasage de la tension aux bornes du condensateur para rapport à l'excitation sinusoidale

    j'ai la bonne expression du déphasage mais quand je trace la courbe en l'utilisant j'ai des incohérences.

    si qq'un voit mes erreurs ....

    merci

    http://img17.imageshack.us/img17/720...nanceuc012.jpg

    -----

  2. #2
    invite6dffde4c

    Re : resonance en tension RLC serie

    Bonjour.
    Dire que l'argument d'un nombre complexe est arctg(Im/Re) est un piège à gogos.
    Par exemple, les nombres complexes (1, 1) et (-1, -1) n'ont pas le même argument alors qu'ils donnent la même arctg.
    Ce qui est imparable est de dessiner le nombre sur le plan complexe. Si vous faites le dessin, vous trouverez que la phase de la tension passe de zéro pour les basses fréquences à –pi/2 pour la résonance et à –pi pour les fréquences élevées.
    Au revoir.

  3. #3
    invite6243ff93

    Re : resonance en tension RLC serie

    Citation Envoyé par LPFR Voir le message
    Ce qui est imparable est de dessiner le nombre sur le plan complexe. Si vous faites le dessin, vous trouverez que la phase de la tension passe de zéro pour les basses fréquences à –pi/2 pour la résonance et à –pi pour les fréquences élevées.

    je reussis pas à conclure pour w=0 et w = w0 par contre pour w tend vers + infini je ne comprends pas comment le plan complexe m'aide

    car en remplacant dans l'expression -arg (1 - w2/wo2 + j w/Qwo),
    w par + infini j'ai en fait -arg (-INF + jINF) où INF = infini
    et là je bloque

    merci

  4. #4
    invite6dffde4c

    Re : resonance en tension RLC serie

    Re.
    Vous avez deux solutions: vous prenez une feuille de papier très, très grande ou vous prenez une feuille normale et vous dites le point en question se trouve quelque par dans cette direction là. Cela doit vous suffire pour trouver l'argument.

    PS: avez vous remarqué que vos deux INF ne sont pas identiques et qu'il y a un "plus grand" que l'autre?
    A+

  5. A voir en vidéo sur Futura
  6. #5
    invite6243ff93

    Re : resonance en tension RLC serie

    ok je pense avoir compris

    pour vérifier
    si je tombe en limite sur

    arg (R + j*+INF) je dis que c'est +pi/2

    ou arg (R-jINF) je dis que c'est -pi/2 ?

  7. #6
    invite6dffde4c

    Re : resonance en tension RLC serie

    Re.
    OK. Je suis d'accord.
    A+

  8. #7
    invite6243ff93

    calcul d'un déphasage

    bonjour
    je suis en train de resoudre un exo de prépa PCSI et je bloque pour calculer un déphasage phi
    j'arrive à l'expression phi= arg(R-jLw) - arg (R+jLw)
    je connais les valeurs de R; L et w
    je suis tenté de prendre les "arctan"
    mais je me souviens du conseil de LPFR il y a qq temps


    "Dire que l'argument d'un nombre complexe est arctg(Im/Re) est un piège à gogos.
    Par exemple, les nombres complexes (1, 1) et (-1, -1) n'ont pas le même argument alors qu'ils donnent la même arctg.
    Ce qui est imparable est de dessiner le nombre sur le plan complexe"

    mes questions sont:
    1) "comment m'en tirer avec le plan complexe) étant donné que les chiffres a utiliser sont peu pratiques?

    2)une correction d'un livre me dit que je peux utiliser arctanb/a où z=a+jb si a>0 ce qui serait le cas ici non?

    merci

  9. #8
    invite6243ff93

    Re : calcul d'un déphasage

    désolé ce que j'ai écrit n'a pas a etre ici j'ai fait une fausse manip

  10. #9
    stefjm

    Re : calcul d'un déphasage

    Bonjour,
    phi= arg(R-jLw) - arg (R+jLw)
    Le premier varie de 0 à -90°.
    Le second de 0 à +90°.
    Donc en faisant la différence, votre phi varie de 0 à -180°.
    Atan est une fonction emmerdante en raison de sa périodicité : Elle fait des sauts (discontinuités) alors que la fonction argument est continue.
    Il faut donc faire bien attention pour recoller les morceaux.
    Cordialement.

    Edit :
    Citation Envoyé par mathier Voir le message
    désolé ce que j'ai écrit n'a pas a etre ici j'ai fait une fausse manip
    Trop tard!
    Moi ignare et moi pas comprendre langage avec «hasard», «réalité» et «existe».

Discussions similaires

  1. RLC: résonance
    Par invitec56065da dans le forum Physique
    Réponses: 4
    Dernier message: 06/04/2009, 02h27
  2. [exo] Démonstration résonance RLC
    Par invite331df03e dans le forum Physique
    Réponses: 2
    Dernier message: 21/02/2008, 17h48
  3. Etude de RLC série
    Par invite4c8f7e37 dans le forum Physique
    Réponses: 13
    Dernier message: 19/01/2008, 01h46
  4. Association serie RC,RL,RLC
    Par invite5dd8afda dans le forum Physique
    Réponses: 5
    Dernier message: 15/10/2006, 14h54
  5. convertisseur résonance série
    Par invitee1335d95 dans le forum Électronique
    Réponses: 4
    Dernier message: 14/01/2006, 18h33