oscillations libres d'un systéme à degré liberté
Répondre à la discussion
Affichage des résultats 1 à 11 sur 11

oscillations libres d'un systéme à degré liberté



  1. #1
    invite144f14af

    oscillations libres d'un systéme à degré liberté


    ------

    bonjour,
    s.v.p. est ce que quelqu'un pourrait me répondre sur cette question
    [IMG]C:\Documents and Settings\Administrateur\Bureau \abderrahim\étude[/IMG]
    est ce qu'on peut considérer que les coordonnées généralisées sont x2 et l'angle téta?

    merci d'avance

    -----

  2. #2
    invite144f14af

    Re : oscillations libres d'un systéme à degré liberté

    désolé, je n'ai pas pu insérer l'image
    s.v.p. comment puis-je l'insérer à partir de l'un de mes fichiers?

    rq:c'est un système à 2 degrés liberté

  3. #3
    invite6dffde4c

    Re : oscillations libres d'un systéme à degré liberté

    Citation Envoyé par Abderrahim 91 Voir le message
    s.v.p. comment puis-je l'insérer à partir de l'un de mes fichiers?
    Bonjour.
    Sous la boite de réponse, vous trouverez un bouton "gérer les pièces jointes". Cliquez dessus et laissez-vous guider.
    Il vous permettra de téléchargez le fichier dans le forum. Une fois la pièce validée par un modérateur (ça prend des heures), elle sera accessible aux autres.
    Au revoir.

  4. #4
    invite144f14af

    Re : oscillations libres d'un systéme à degré liberté

    merci,
    c'est vraiment très gentille de me répondre

  5. A voir en vidéo sur Futura
  6. #5
    invite144f14af

    Re : oscillations libres d'un systéme à degré liberté

    re:bonjour,
    je crois que j'ai affiché l'image.
    Images attachées Images attachées  

  7. #6
    invite6dffde4c

    Re : oscillations libres d'un systéme à degré liberté

    Re.
    Oui. Mais il faut attendre la validation.
    A+

  8. #7
    invite144f14af

    Re : oscillations libres d'un systéme à degré liberté

    re.
    je crois qu'elle a été validée.

  9. #8
    invite6dffde4c

    Re : oscillations libres d'un systéme à degré liberté

    Re.
    Oui. x2 et thêta décrivent le système.
    Mais j'espère que vous pouvez faire des approximations.
    Faut-il tenir compte de la gravité?
    Est que l'on peut considérer que thêta est petit? Ceci permet de garder le ressort entre m1 et m2 horizontal, et d'approcher sin(thêta) par thêta (ce qui est très agréable!)
    A+

  10. #9
    invite144f14af

    Re : oscillations libres d'un systéme à degré liberté

    Citation Envoyé par LPFR Voir le message
    Re.
    Oui. x2 et thêta décrivent le système.
    Mais j'espère que vous pouvez faire des approximations.
    Faut-il tenir compte de la gravité?
    Est que l'on peut considérer que thêta est petit? Ceci permet de garder le ressort entre m1 et m2 horizontal, et d'approcher sin(thêta) par thêta (ce qui est très agréable!)
    A+
    re.re.

    je ne crois pas qu'il faut tenir compte de la gravité si considère que thêta est petit.
    merci pour votre aide

  11. #10
    invite6dffde4c

    Re : oscillations libres d'un systéme à degré liberté

    Bonjour.
    Que thêta soit petit n'est pas une raison suffisante pour ignorer la gravité. Regardez dans l'énoncé si on en parle de "verticale", "pendule" ou "gravité".

    Si la gravité n'intervient pas, alors vous pouvez remplacer le ressort qui va au point milieu de la tige par un ressort de constante k/2 appliqué directement sur la masse m1. Cela vous évite de trimballer thêta et des sinus ou des tangentes. Utilisez une autre variable x1 pour la position de la masse de gauche.
    Vous retrouvez 3 ressorts et deux masses: (k/2)--- m1---k---m2---k
    Les deux variables qui décrivent le système sont maintenant x1 et x2.
    Ça ne simplifie pas le problème mais ça raccourcit l'écriture.
    Au revoir.

  12. #11
    invite144f14af

    Re : oscillations libres d'un systéme à degré liberté

    Citation Envoyé par LPFR Voir le message
    Bonjour.
    Que thêta soit petit n'est pas une raison suffisante pour ignorer la gravité. Regardez dans l'énoncé si on en parle de "verticale", "pendule" ou "gravité".

    Si la gravité n'intervient pas, alors vous pouvez remplacer le ressort qui va au point milieu de la tige par un ressort de constante k/2 appliqué directement sur la masse m1. Cela vous évite de trimballer thêta et des sinus ou des tangentes. Utilisez une autre variable x1 pour la position de la masse de gauche.
    Vous retrouvez 3 ressorts et deux masses: (k/2)--- m1---k---m2---k
    Les deux variables qui décrivent le système sont maintenant x1 et x2.
    Ça ne simplifie pas le problème mais ça raccourcit l'écriture.
    Au revoir.
    oui,
    vous avez raison, oscillations pour thêta très petit avec U[IND]g/IND]=m1gl2(tê)2
    Ug énergie potentielle de m1
    mais l'énergie potentielle de m2=0

    j'éspère d'être sur la bonne voie, merci encore

Discussions similaires

  1. oscillations à un degré de liberté
    Par invite14ace06c dans le forum Physique
    Réponses: 5
    Dernier message: 21/07/2009, 18h02
  2. Degrés de liberté d'un système thermodynamique.
    Par invitec186203e dans le forum Physique
    Réponses: 0
    Dernier message: 01/12/2008, 17h18
  3. Equation différentielle d'un système à 2 degrés de liberté
    Par invite534bf63e dans le forum Physique
    Réponses: 5
    Dernier message: 15/06/2008, 18h28
  4. Oscillations libres et fonction linéaire.
    Par invitef2708712 dans le forum Physique
    Réponses: 2
    Dernier message: 17/04/2008, 01h06
  5. Oscillations libres ammorties - incohérence physique....?
    Par invitee17fdb12 dans le forum Physique
    Réponses: 7
    Dernier message: 17/05/2007, 16h25