Répondre à la discussion
Affichage des résultats 1 à 8 sur 8

mélange de métrique de Minkowski et de Schwarzschild



  1. #1
    Infra_Red

    mélange de métrique de Minkowski et de Schwarzschild

    Salut,

    une question me tarabuste.
    Dans un exercice de relativité générale, le prof écrit :



    soit en restreinte :




    et en générale :



    avec g métrique de Schwarzschild (j'ai plus l'expression exact en tête).

    ma question :
    pourquoi le temps propre ne subit pas la métrique de Sch. mais la métrique de Minko. dans le cas de la RG ?
    on considère que le temps propre n'est pas influencé par la géométrie de l'espace ?

    merci

    -----


  2. Publicité
  3. #2
    Gwyddon

    Re : mélange de métrique de Minkowski et de Schwarztschild

    Bonjour,

    Le temps propre est, par définition, tel que sa variation élémentaire est la variation d'intervalle (à c près). Donc comme le ds de la relativité générale n'est pas le même que le ds de la relativité restreinte, il n'y a pas de raison que son évolution soit la même dans les deux théories.

    Dit autrement, méfie toi de phrases comme

    "pourquoi le temps propre ne subit pas la métrique de Sch. mais la métrique de Minko. dans le cas de la RG ?"

    car elles sont imprécises/floues/inexactes.

    Cordialement,

    G.
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  4. #3
    Deedee81

    Re : mélange de métrique de Minkowski et de Schwarztschild

    Salut,

    Gwyddon a raison sur le flou car tu dis :

    Citation Envoyé par Infra_Red Voir le message
    pourquoi le temps propre ne subit pas la métrique de Sch. mais la métrique de Minko. dans le cas de la RG ?
    alors que tu écris :

    Citation Envoyé par Infra_Red Voir le message
    et en générale :
    Donc sur un intervalle temps temps fini il est manifeste que la valeur du temps propre dépend de la métrique de Schwartzchild, il la "subit" comme tu dis.

    D'un autre coté (c'est peut être de là que vient la confusion ?) il faut bien voir comment est définit le temps propre. C'est le temps donné par une horloge comobile avec l'objet considéré.

    Comme ds^2 est invariant, il suffit donc de considérer (principe d'équivalence) l'espace de Minkowski tangent en ce point et le repère et les coordonnées comobiles, c'est-à-dire avec dx=0, etc.. d'où
    (avec le t' de ce repère)
    Tout est relatif, et cela seul est absolu. (Auguste Comte)

  5. #4
    Infra_Red

    Re : mélange de métrique de Minkowski et de Schwarztschild

    ok
    en fait on considère que l'espace tend localemement vers une géométrie plane...
    on considère l'espace entier comme la somme d'une infinité d'espaces minkowskiens.

  6. #5
    nico2009

    Re : mélange de métrique de Minkowski et de Schwarztschild

    Bonsoir,

    je ne suis pas sûr que le terme "somme" soit très approprié ici.
    D'ailleurs quel est le bon concept ?

  7. A voir en vidéo sur Futura
  8. #6
    Deedee81

    Re : mélange de métrique de Minkowski et de Schwarztschild

    Citation Envoyé par Infra_Red Voir le message
    ok
    en fait on considère que l'espace tend localemement vers une géométrie plane...
    on considère l'espace entier comme la somme d'une infinité d'espaces minkowskiens.
    Comme le signale nico, "somme" est sans doute un peu osé Mais dans ce sens ce n'est pas une somme d'une infinité d'espaces de Minkowski mais plutôt une infinité de bouts infinitésimaux d'espaces de Minkowski (l'espace de Minkowski est tangent à la variété riemanienne, et comme toute bonne tangente il n'y a qu'un point en commun).

    Kip Thorn mettait bien en garde de ne pas confondre l'espace de Minkowski tangent à la variété avec la variété elle-même, même dans un tout petit voisinage.
    Tout est relatif, et cela seul est absolu. (Auguste Comte)

  9. Publicité
  10. #7
    Rincevent

    Re : mélange de métrique de Minkowski et de Schwarztschild

    Bonjour,

    si on veut vraiment employer le terme "somme", on peut en se plaçant dans le cadre des espaces fibrés : fibré tangent... m'enfin vaut mieux savoir de quoi on parle quand on le fait
    Ceux qui manquent de courage ont toujours une philosophie pour le justifier. A.C.

  11. #8
    Infra_Red

    Re : mélange de métrique de Minkowski et de Schwarzschild

    jme suis mal exprimé mais je pense que tout le monde a compris que ma "somme" était juste l'union d'une infinité d'espaces plans....

Sur le même thème :

Discussions similaires

  1. Métrique de Minkowski
    Par parousky dans le forum Mathématiques du supérieur
    Réponses: 13
    Dernier message: 07/11/2009, 22h02
  2. determination de la métrique de Schwarzschild
    Par Thwarn dans le forum Physique
    Réponses: 3
    Dernier message: 31/10/2007, 17h47
  3. Métrique de Schwarzschild
    Par neutrino éléctronique dans le forum Physique
    Réponses: 13
    Dernier message: 02/07/2007, 18h01
  4. Métrique de Minkowski
    Par neutrino éléctronique dans le forum Physique
    Réponses: 10
    Dernier message: 01/07/2007, 19h26
  5. Métrique de Schwarzschild
    Par isozv dans le forum Physique
    Réponses: 10
    Dernier message: 20/12/2006, 23h54