Calcul d'incertitude de mesure de barycentre
Répondre à la discussion
Affichage des résultats 1 à 4 sur 4

Calcul d'incertitude de mesure de barycentre



  1. #1
    invitef2014fc2

    Calcul d'incertitude de mesure de barycentre


    ------

    Bonjour à tous,

    Je viens ici chercher votre infini savoir et vous demander un coup de main

    je passe en M1 de mécanique énergetique et je travaille actuellement sur un projet de détermination de centre de gravité (CdG) dans un plan (le plan (X,Y) avec Z en verticale ascendante). L'objet peut peser entre 200kg et 10 tonnes et j'ai besoin d'une très grande précision de résultat de l'ordre du millimètre.



    le système:

    Pour les mesure le système est constitué d'un support à trois ou quatre pieds sur lequel on pose l'objet dont on veut le CdG.

    Des cellules d'effort (type HBM C2 je pense) sont placées au niveau des pieds du support et on sait déterminer leur position avec un laser tracker (type leica at401). On mesure aussi avec le même laser la position de l'objet sur le support.



    En supposant un système à trois pieds j'ai identifié trois types d'erreur et j'ai des formules pour les déterminer mais j'aimerai confirmation de la véracité de ces formules et quelques explications:

    prenons les calculs en X (c'est les même en Y)
    soit Mi la masse mesurée sur les cellules 1 2 et 3
    soit Mt la masse totale de l'objet (somme_des_Mi)
    soit Xi la coordonnée en X des cellules 1 2 et 3
    on a alors:

    Xcg=(M1*X1+M2*X2+M3*X3)/Mt

    Or j'ai des erreurs au niveau de la position des cellules, de la position de l'objet, de la mesure de force des cellules et de la masse totale de l'objet (somme des masses mesurées).

    -- Je fais la moyenne quadratique (j'ai bien raison de faire la moyenne quadratique?) des erreurs de mesure de position (position des cellules et de l'objet) je trouve alors un delta Xi que je noterai dXi
    -- J'ai mon erreur de mesure d'effort que je noterai dMi ex: +/-0.1N
    -- Et mon erreur de masse totale qui est la moyenne quadratique (j'ai bien raison de faire la moyenne quadratique?) de mes erreurs de mesure d'effort notée dMt ex pour 3 cellules: sqrt(0.12+0.12+0.12)

    et pour mon calcul d'erreur de position que je note dXcg je fais donc:
    (et la j'aimerai savoir si mon calcul est bon et si à la fin je trouve bien une valeur qui corresponds à mon erreur de position?)
    dXcg = somme_des_(Mi*dXi)/Mt + somme_des_(dMi*Xi)/Mt + somme_des_(Mi*Xi)*dMt/Mt2

    Voila j'espère avoir été clair et vous remercie d'avance de votre aide

    -----

  2. #2
    invite6dffde4c

    Re : calcul d'incertitude de mesure de barycentre

    Bonjour et bienvenu au forum.
    Les moyennes quadratiques c’est chouette. Ça donne des valeurs d’erreur plus faibles que les erreurs maximales (pour une même situation).
    Donc, cela dépend de l’importance que vous donnez au résultat de vos calculs. S’il s’agit de vendre la marchandise, les moyennes quadratiques sont meilleures (à condition que ni vous ni le client soyez malchanceux). Si des vies dépendent de la précision de votre calcul, alors il faut être pessimiste et calculer les erreurs dans la situation la plus défavorable, quand tous les erreurs s’ajoutent.

    Prenons un exemple : le volume d’un parallélépipède en mesurant la largeur, hauteur et longueur.
    Vous pouvez être prudent et dire que dans le pire des cas les trois erreurs seront par excès ou par défaut : dans ce cas les erreurs relatifs s’ajoutent.
    Mais vous pouvez être optimiste (et parieur), et dire que certaines erreurs seront par excès et d’autres par défaut, et qu’il y a peu de chances pour que toutes les erreurs soient dans le même sens. Dans ce cas là, vous faites la moyenne quadratique.

    Vous verrez que la majorité des gens préfèrent les moyennes quadratiques.
    Au revoir.

  3. #3
    inviteb8092abb

    Re : Calcul d'incertitude de mesure de barycentre

    Bonjour
    Pour limiter les imprécisions, j utiliserais un scanner 3d. J importerais sous un logiciel de CAO le modele 3d et celui-ci me calculerait exactement le centre de gravité.

  4. #4
    invitef2014fc2

    Re : Calcul d'incertitude de mesure de barycentre

    Merci pour vos réponses, l'info sur les moyennes quadratiques était vraiment très instructive. Et cdx01 merci mais l'objet est bien trop gros et complexe et il n'est pas du tout uniforme au niveau masse. Donc pas de scanner 3D... Le laser tracker sait déjà me placer l'objet dans l'espace avec une précision extrême.

    Et par rapport à ma formule de calcul d'erreur personne n'a d'avis? ^^
    (J'aimerais savoir si mon raisonnement est juste et me donne bien en résultat mon incertitude de position?

  5. A voir en vidéo sur Futura

Discussions similaires

  1. calcul incertitude chaîne de mesure
    Par invite05f32944 dans le forum Électronique
    Réponses: 6
    Dernier message: 22/07/2014, 09h55
  2. Calcul d'incertitude de mesure
    Par invitee086a67c dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 08/10/2011, 15h35
  3. Calcul incertitude de mesure
    Par invite7815d7af dans le forum Physique
    Réponses: 1
    Dernier message: 27/08/2008, 18h20
  4. Calcul d'incertitude sur une mesure
    Par invitef99e3ebc dans le forum Physique
    Réponses: 6
    Dernier message: 05/03/2008, 18h19
  5. Calcul d'erreur, incertitude sur la mesure
    Par invite51f5ee7b dans le forum Chimie
    Réponses: 3
    Dernier message: 21/05/2007, 12h44