Bonsoir
Tous les physiciens trouvent cette équation irremplaçable et un peu "magique".
On dit que cette équation décrit une probabilité de trouver un électron à tel endroit et à tel moment. Elle serait linéaire et déterministe. Pour la résoudre on utiliserait des dérivées partielles (x,y,z,t).
Elle serait sous une apparente facilité visuelles (avec l'Hamiltonien) assez difficile à résoudre.
Les probabilités se retrouvent souvent sur la loi des grands nombres. Plus les probabilités sont faibles nombreuses doivent être les expériences.
Comment a-t-on pu prouver que cette équation était juste. Il a sans doute fallu la tester sur un échantillon très important ?
Cordialement
-----



S'il est vrai que la théorie doit être validée par l'expérience ils préfèrent quand même qu'on justifie comment on en est arrivé là, c'est assez normal (la méthode scientifique c'est expérience => théorie => expérience et pas juste théorie => expérience).
Enfin, bon, je rigole car il y a quand même énormément de chose qui ont été comprise. C'est ce que tu expliques
. Il suppose ensuite que cette action classique doit être remplacée en MQ par une fonction 