Bonjour à tous ! Je suis élève en première S et j'ai un dm de maths dont je n'ai vraiment pas compris le cours. J'y ai travaillé toutes les vacances mais là vraiment je comprends pas du tout. Je me permets de vous écrire l'énoncé en espèrant que vous m'aiguilliez.
Soit f la fonction définie sur [0;+oO[ par f(x) = 1+(1/(1+X))
1/ On note u et v les fonctions définies respectivement par u(x)=1+X et v(x)=1/x
a) Démontrer que f = u(rond)v(rond)u.
b) En déduire que f est décroissante sur [0;+oO[ et que f(x) appartient à cet intervalle.
c) En déduire les variations de f(rond)f ; f(rond)f(rond)f ; f(rond)f(rond)f(rond)f et plus généralement de f(rond)f(rond) .... (rond)f.
2/ a) Ecrire f(x) sous la forme d'une fraction rationnelle ( quotient de 2 fonctions polynomes)
b) Calculer (f(rond)f)(x) et donner la réponse sous forme d'une fraction rationnelle.
c) Même question avec (f(rond)f(rond)f)(x) et (f(rond)f(rond)f(rond)f)(x)
Ce n'est que le tout début du dm mais j'ai beau chercher dans tous les bouquins que j'ai je n'y arrive pas. En vous remerciant par avance, aidez moi !!
-----