Petite description résumée :Pour réaiguiller le fil, l'objectif était de continuer sur les géodésiques : On s'est arrêtés à la définition de la géodésique d'espace temps + du 4-vecteur constant qui "découpe" les lignes d'univers non accélérées, mais il va maintenant falloir comprendre par quel mécanisme les géodésiques vont se courber et quel est lien avec le champ de gravité (autrement dit la cuvette).
On a d'abord la métrique. La métrique est un tenseur, qui permet de mesurer les intervalles entre évènements de la variété. Le tenseur métrique varie d'un point à l'autre de la variété, on a un champ de métrique sur l'espace-temps. Autre manière de le dire, en chaque évènement de l'espace-temps, on trouve un tenseur métrique d'une certaine valeur (c'est comme le champ de pression (scalaire) ou le champ électrique (vectoriel), sauf que là c'est un champ de tenseurs). On peut fixer un système de coordonnées, dans lequel le tenseur métrique aura 16 coordonnées.
Ensuite on a la dérivée covariante ou connexion, qui va décrire comment un vecteur change quand il est déplacé (il peut tourner, ou s'allonger).
Si on fixe un système de coordonnées, cette connexion s'exprime avec les symboles dits "de Cristoffel", qui dépendent des dérivées partielles premières des coordonnées de la métrique.
En combinant des dérivées covariantes (d'une certaine façon), on obtient le tenseur de Riemann, qui va décrire, entre autres choses, comment des géodésiques initialement parallèles vont s'écarter ou se rapprocher. Comme pour la métrique, on a un champ de Riemann sur l'espace-temps.
Si on fixe un système de coordonnées, les coordonnées de ce tenseur (il y en a 64, mais il n'y en a que 20 qui sont indépendantes), dépendent des dérivées partielles secondes des coordonnées de la métrique.
On fabrique ensuite le tenseur de Ricci en contractant le tenseur de Riemann sur lui-même. Idem, on a un champ de Ricci sur l'espace-temps. En termes de coordonnées on a alors 16 coordonnées, dont 10 indépendantes, pour ce tenseur.
Pour finir, on fabrique le tenseur d'Einstein, à partir du tenseur de Ricci, de la courbure scalaire (c'est le tenseur de Ricci contracté sur lui-même) et de la métrique. Idem, on a un champ d'Einstein sur l'espace-temps.
De l'autre coté, on a le tenseur énergie-impulsion, qui contient toutes les informations sur les densités et les flux d'énergie et de quantité de mouvement. C'est également un champ sur l'espace-temps, qui est nul dans les régions vides. L'équation d'Einstein postule une égalité (à une constante près) entre ce tenseur et le tenseur d'Einstein. C'est le fondement de la relativité générale.
Ainsi, le contenu en énergie et impulsion, décrit par le champ d'énergie-impulsion, impose la forme du champ d'Einstein. Seulement, il n'impose pas totalement la forme du champ de Riemann (plusieurs valeurs de Riemann pouvant conduire, à la même valeur d'Einstein). Cela fait qu'on peut avoir un tenseur de Riemann non nul alors que le tenseur énergie-impulsion est nul (et c'est très fréquent, par exemple la solution de Schwarzschild est une solution du vide), c'est-à-dire que des régions vides de l'espace-temps peuvent être courbées.
D'une manière un peu brouillonne, on peut dire que le tenseur énergie-impulsion contraint (et seulement partiellement!) les dérivées partielles secondes de la métrique. Différents champ de métrique pourront correspondre à un même champ d'energie-impulsion (y compris des champs vides!).
Analogie en maths plus simple : on donne par exemple (f"(x))² et on doit trouver f(x). C'est une équation différentielle, et il y a de nombreuses solutions pour f(x). Et on doit donc spécifier des conditions supplémentaire pour réduire le nombre de solutions.
En RG c'est pareil, pour fixer le bon champ de métrique, il faut fixer des conditions aux limites, ainsi qu'éventuellement, des conditions de symétrie. Par exemple pour la solution de Schwarzschild, on considère un espace-temps vide, on pose un système de coordonnées de type sphérique (t,r,theta,phi), on impose une symétrie suivant la coordonnée t (=symétrie par translation dans le temps si t est une coordonnée temporelle, ce qui n'est pas le cas partout dans cette solution, mais ça on ne peut pas le savoir avant de résoudre), ainsi qu'une symétrie suivant les coordonnées angulaire theta et phi (=symétrie sphérique) et on impose que quand la coordonnée r tend vers l'infini, le tenseur de Riemann doit s'annuler (=espace-temps plat à l'infini).
m@ch3
-----