Le hasard existe-t-il ? - Page 16
Répondre à la discussion
Page 16 sur 20 PremièrePremière 16 DernièreDernière
Affichage des résultats 451 à 480 sur 578

Le hasard existe-t-il ?



  1. #451
    invite8915d466

    Re : Le hasard existe-t-il ?


    ------

    en fait, Everett ne parlait pas de multiunivers et c'est une expression assez malheureuse. Dans sa Théorie, il n'y a qu'un grand Univers contenant toutes les possiblités et nous n'en observons qu'une composante parmi une infinité (la mesure exacte de cette infinité n'est d'ailleurs pas le moindre problème de sa théorie).

    On parle de "multiunivers" en appelant "univers" avec un petit u une des composantes quasi classiques observable. Les interférences ont lieu lorsque ces "univers" n'ont pas encore divergé, mais une fois qu'on a fait la mesure les univers se sont irrémédiablement séparés.

    C'est un peu comparable à la limite de l'horizon qui fait qu'on ne voit qu'une partie de la Terre, mais la Terre toute entière contient tous les horizons possibles....

    -----

  2. #452
    invite7863222222222
    Invité

    Re : Le hasard existe-t-il ?

    Les interférences ont lieu lorsque ces "univers" n'ont pas encore divergé
    Qu'entends tu par diverger ? Deux univers n'ayant pas divergés sont identiques ?

  3. #453
    invitef4234238

    Re : Le hasard existe-t-il ?

    Citation Envoyé par BBFaïta Voir le message
    Bonjour,
    pour arriver à cette conclusion "hors de tout doute" on ne prend en compte que l'interaction des photons entre eux c'est ça ?
    Bonjour,
    Justement, les conditions de l'expérience sont telles, q'une fois émis, il ne puisse plus y avoir d'interaction entre les photons, d'aucune façon.

    Anton

  4. #454
    invitea20bed5c

    Re : Le hasard existe-t-il ?

    Citation Envoyé par anton Voir le message
    Bonjour,
    Justement, les conditions de l'expérience sont telles, q'une fois émis, il ne puisse plus y avoir d'interaction entre les photons, d'aucune façon.
    Et quid de l'interaction des photons avec l'environnement ?
    Et puis quand tu dis "il n'y a plus d'interaction entre les photons", tu parles des interactions que l'on sait mesurer et modéliser. Du point de vue de l'interconnexion quantique une particule restera toujours en relation avec toutes les autres, quelque soit le processus expérimental sensé l'isoler.

  5. #455
    invite06fcc10b

    Re : Le hasard existe-t-il ?

    Citation Envoyé par gillesh38 Voir le message
    Bonjour

    le problème est qu'il ne suffit pas de dire "on pourrait imaginer une espèce de dé qui ferait que..." pour en faire une théorie physique. Il faudrait faire un peu plus : dire exactement ce que c'est que ce dé et comment il fait pour interagir de façon non locale avec les deux détecteurs en même temps.
    Rebonjour,

    En fait, il s'agit là d'un problème épistémologique et méthodologique. Ce qui est sûr, c'est, comme tu le dis si bien, que la MQ ne permet pas de prédire les événements quantiques individuels et qu'il ne semble y avoir aucune mesure supplémentaire permettant d'aller plus loin. A partir de là, il y a 2 postures :
    1) On pense qu'il n'existe rien de plus pour caractériser le système, même dans le non observable.
    2) On pense qu'il existe quelque chose de plus pour caractériser le système, mais cette chose est dans le non observable.
    On l'aura compris, tu sembles te positionner en 1) alors que je me positionne en 2). Mais ce que je ne comprends pas, c'est que tu suggères que ceux qui se positionnent en 2) doivent apporter un complément théorique et qu'il est juste de se positionner pour le moment en 1). Tu sembles même persuadé que 2) est impossible. Pourtant, je ne vois pas comment tu peux démontrer que quelque chose de non observable ne peut exister.
    Plus fondamentalement, je ne suis pas d'accord. La position 1) ne me parait pas acceptable, car elle me semble aller à l'encontre de la démarche scientifique. Pour moi, cela traduit un renoncement à l'explicabilité des choses. Comme si on pouvait se contenter d'un "aléatoire pur" existant dans la nature, alors qu'on ne sait pas le produire mathématiquement.
    Et donc, même sans pouvoir apporter de complément théorique pertinent, je pense que c'est le positionnement 2) qui doit être préféré, en attendant de pouvoir faire mieux. C'est une question de principe, car en science, on postule avant tout qu'il existe une explication des phénomènes qui repose sur des modèles mathématiques. C'est en tout cas ma façon de voir les choses.

    Cordialement,
    Argyre

  6. #456
    invité576543
    Invité

    Re : Le hasard existe-t-il ?

    Bonsoir,

    Citation Envoyé par Argyre Voir le message
    Pourtant, je ne vois pas comment tu peux démontrer que quelque chose de non observable ne peut exister.
    Ca, c'est très très simple: il suffit de donner comme définition à "exister" quelque chose qui implique la possibilité d'observation.

    Plus fondamentalement, je ne suis pas d'accord. La position 1) ne me parait pas acceptable, car elle me semble aller à l'encontre de la démarche scientifique.
    Parce que tu trouves qu'invoquer des choses non observables est scientifique?

    Pour moi, cela traduit un renoncement à l'explicabilité des choses. Comme si on pouvait se contenter d'un "aléatoire pur" existant dans la nature, alors qu'on ne sait pas le produire mathématiquement.
    Et donc, même sans pouvoir apporter de complément théorique pertinent, je pense que c'est le positionnement 2) qui doit être préféré, en attendant de pouvoir faire mieux.
    Et pourquoi ne devrait-on pas renoncer à l'explicabilité de certaines choses. Pas toutes, juste une partie...

    C'est une question de principe, car en science, on postule avant tout qu'il existe une explication des phénomènes qui repose sur des modèles mathématiques.
    C'est mettre les choses à l'envers. On arrive à modéliser certains phénomènes (i.e. par des modèles mathématiques), et du coup nous, humains, avons une activité qui s'appelle Science. Et la Science cherche à modéliser le maximum de phénomènes, et espère (plutôt que postule) que ce maximum est très grand. Pour plagier, ce qui est extraordinaire dans l'univers, c'est qu'une partie d'icelui est compréhensible.

    En d'autres mots, nous devrions être contents d'arriver à modéliser un peu l'univers. L'extrème que tu défends est un peu, excuses-moi, une forme d'arrogance.

    Cordialement,

  7. #457
    invitea20bed5c

    Re : Le hasard existe-t-il ?

    Citation Envoyé par mmy Voir le message
    En d'autres mots, nous devrions être contents d'arriver à modéliser un peu l'univers. L'extrème que tu défends est un peu, excuses-moi, une forme d'arrogance.
    A mon avis Argyre ne défend pas le fait que nous devrions tout pouvoir modéliser, il critique le fait que face à une incapacité de modéliser et donc de prévoir certains concluent à l'existence du hasard.

  8. #458
    spi100

    Re : Le hasard existe-t-il ?

    Citation Envoyé par gillesh38 Voir le message
    Il est d'ailleurs très amusant de comparer la situation de la Meca Q avec celle du libre arbitre humain (point qui a été très brievement abordé dans le fil ici , mais sans beaucoup de suite. Curieusement, beaucoup de gens (peut etre la majorité) répugnent à l'idée que le monde matériel (décrit par la Meca Q ) puisse etre indeterminé, mais répugnent également à l'idée que l'être humain puisse être déterminé, et passent beaucoup d'énergie à argumenter que la Meca Q POURRAIT en fait etre une théorie approchée d'un monde "foncièrement" déterministe et que l'être humain POURRAIT avoir une part d'indéterminisme.
    Ca ne va pas plaire à MMY, mais je reviens quand même à la charge.
    Si je peux construire des séquences nombres, tel que celle donnée par les digits du nombre de Chaitin. Cette suite n'est pas une pure abstraction, car je dispose d'un moyen effectif de la construire. Néanmoins, quelque soit le test statistique que j'utilise, je dois conclure que cette suite est purement aléatoire.
    Le paradoxe apparent vient du fait que la suite n'est pas définissable par un algorithme, cela veut par exemple dire que je ne peux pas déterminer le nième élément connaissant les n-1 autres premiers éléments.

    Maintenant, si le coeur de la description de la mesure quantique s'appuie sur des objets tel que l'omega de Chaitin, ou n'importe quel autre objet de nature non algorithmique. Bien que le phénomène paraisse aléatoire de l'extérieur, pour un physicien ne disposant que de moyens algorithmiques pour ses mesures et ses moyens de calculs. Ce phénomène serait malgré tout traduisible par une théorie mathématique.

    Plutot que de dire que la mesure quantique est un phénomène impossible à décrire. On pourrait supposer que la mesure quantique n'est pas descriptible par une théorie récursive. On pourrait alors peut être envisager une théorie de la mesure quantique compatible avec l'expérience et néanmoins mathématisable.
    GCS/S s: a C++ DI++>+++ UL++A++HIS++$ P++>+++$ E+>++$ W+>++$ N+ Y+ e++++ t+++ y+++

  9. #459
    invite8915d466

    Re : Le hasard existe-t-il ?

    Bonsoir

    je pense que Mmy et moi raisonnons plus en physiciens et vous plus en informaticiens . Les théories physiques ne se prononcent jamais sur la réalité intrinsèque du monde (on a mis un certain temps à s'en rendre compte certes) mais tentent de construire des modèles permettant de reproduire des liens entre observables. C'est le grand mérite d'Einstein d'avoir proposé que si aucune expérience ne pouvait mettre en évidence un référentiel absolu (l'ether), alors autant l'abandonner. De même la seule géométrie que nous pouvons observer est celle des rayons lumineux , si celle-ci est non euclidienne mais qu'on n'a aucun moyen expérimental de la définir autrement pour qu'elle soit euclidienne, alors il faut considérer que l'espace temps "est" non euclidien, etc, etc...La physique ne s'interesse qu'à ce qui est observable ou du moins qui permet de calculer des quantités observables. Par exemple les potentiels electromagnétiques ne sont pas observable directement mais on peut en déduire des quantités observables.

    Ce qui est genant dans votre approche, c'est que la seule justification du fait que le monde soit prédictible est due a l'expérience quotidienne, mais on sait qu'elle est trompeuse. C'est un peu la demarche de Tycho Brahe qui acceptait que les planètes tournent autour du Soleil - mais que celui-ci devait tourner autour de la Terre ! il n'y a pas d'autre justification que l'habitude de pensée, mais ce n'est pas un argument très fort de réalité .

    Gilles

  10. #460
    spi100

    Re : Le hasard existe-t-il ?

    Citation Envoyé par gillesh38 Voir le message
    Ce qui est genant dans votre approche, c'est que la seule justification du fait que le monde soit prédictible est due a l'expérience quotidienne, mais on sait qu'elle est trompeuse.
    Mais justement l'habitude de penser est de dire que ce que l'on peut approximer et formaliser est prédictible.

    Et justement non, la logique mathématique est pleine de ces objets bizarres, définissables, constructibles mais imprédictibles et insaissables par des moyens concrets comme un algorithme.
    GCS/S s: a C++ DI++>+++ UL++A++HIS++$ P++>+++$ E+>++$ W+>++$ N+ Y+ e++++ t+++ y+++

  11. #461
    invite7863222222222
    Invité

    Re : Le hasard existe-t-il ?

    La physique ne s'interesse qu'à ce qui est observable
    Il ya un paradoxe, un photon ne serait pas observable, pourtant c'est bien un terme physique, il me semble donc pas tout à fait exact de dire que les physiciens ne s'interessent qu'à ce qui est observable.

  12. #462
    invité576543
    Invité

    Re : Le hasard existe-t-il ?

    Citation Envoyé par spi100 Voir le message
    Et justement non, la logique mathématique est pleine de ces objets bizarres, définissables, constructibles mais imprédictibles et insaissables par des moyens concrets comme un algorithme.
    Les maths ne sont pas le sujet ici, mais si tu regardes bien, tous les exemples que tu cites sont basés ultimement sur des postulats d'existence, en particulier d'existence d'ensembles non dénombrables. Est-ce vraiment surprenant qu'en partant d'un postulat d'existence de machins essentiellement non calculables, on en arrive à conclure à l'existence de machins non calculables?

    Cordialement,

  13. #463
    invitec5ee1592

    Re : Le hasard existe-t-il ?

    Oui, le hazarrre existe ! J'étais avec lui en sixième !
    il suffit pour le connaitre de combiner mathématiquement et aléatoirement les 128 000 milliards de facteurs qui interviennent dans chaque seconde de notre pauvre vie...
    Désolé

  14. #464
    invitef4234238

    Re : Le hasard existe-t-il ?

    Citation Envoyé par BBFaïta Voir le message
    Et quid de l'interaction des photons avec l'environnement ?
    Et puis quand tu dis "il n'y a plus d'interaction entre les photons", tu parles des interactions que l'on sait mesurer et modéliser. Du point de vue de l'interconnexion quantique une particule restera toujours en relation avec toutes les autres, quelque soit le processus expérimental sensé l'isoler.
    Re bonjour, c'est justement cette "interconnexion" quantique que l'on ne peut expliquer, elle se déroule en dehors du temps. Je ne pense pas que qui que ce soit puisse expliquer ce fait actuellement, nous nous contentons de constater. Mais il ne s'agit peut-être pas d'interconnection, l'intrication est, me sembre-t-il, autre chose que cela.

    Anton

  15. #465
    invite63840053

    Re : Le hasard existe-t-il ?

    S'il est impossible de démontrer que notre univers est déterministe, est-il possible de démontrer qu'il ne l'est pas ?
    La démonstration n'est-elle pas un moyen de prouver, par un raisonnement déterministe, ce qui est ?
    Or, comment pourrait-on prouver à l'aide d'un raisonnement déterministe que notre univers n'est pas déterministe ?
    C'est un peu paradoxale.

  16. #466
    spi100

    Re : Le hasard existe-t-il ?

    Citation Envoyé par mmy Voir le message
    Les maths ne sont pas le sujet ici, mais si tu regardes bien, tous les exemples que tu cites sont basés ultimement sur des postulats d'existence, en particulier d'existence d'ensembles non dénombrables.
    Non, dans les exemples que je cite, il s'agit toujours d'ensembles dénombrables. En particulier le nombre de Chaitin est définit sur l'ensemble des algorithmes qui est dénombrable. Ceci dit oui, tu as raison il y a bien un postulat c'est la thèse de Church-Turing.

    Vouloir parler de physique sans mathématique me parait difficile. Personnellement, je trouve inévitable que la physique aboutisse à des questions de mathématiques et de logique formelle de plus en plus pointues.

    La suite s'adresse plutot à Gillesh.

    C'est Feynman (et oui encore lui) qui a pointé l'importance de l'algorithmie en physique. C'est à lui par exemple que l'on doit la construction la plus simple d'une machine de Turing universelle. Il est à l'origine de la théorie réversible du calcul, tel que l'ont ensuite développé Toffoli and co dans les années 70. Maintenant tout ce courant aboutit à l'algorithmie quantique, et amha tout cela est loin d'être fini. Si les physiciens commencent a réfléchir sur ce qu'est un processus de calcul, dans quel mesure la nature peut être vue comme tel, ils sont forcemment amener à ce poser la question de la limite de ces processus de calculs.

    Quant à l'idée que la physique ne doit manipuler que des quantités observables, que dire de la fonction d'onde de la mécanique quantique, entité non observable par excellence et qui sous-tend tout le calcul des observables. C'est de la pure spéculation, mais si la théorie de l'information de Chaitin permet de caractériser et de construire de façon très fine, différent type de hasards ( suites approximables, non approximables, etc). Peut-être aboutirons - nous à des théories testables de la mesure quantique, et répondre à des questions tel que la nature calculable ou pas de l'univers.

    S'il parait naturel de se poser la question de savoir si la nature est déterministe ou non, je trouve que la question de la calculabilité de l'univers est au moins tout aussi bien posée, elle manipule peut être des concepts plus complexes que la notion de hasard. Mais cette difficulté vient aussi de que les notions utilisés sont clairement définis et que ça demande un réel effort d'abstraction.
    Dernière modification par spi100 ; 15/01/2007 à 20h04.
    GCS/S s: a C++ DI++>+++ UL++A++HIS++$ P++>+++$ E+>++$ W+>++$ N+ Y+ e++++ t+++ y+++

  17. #467
    invitef4234238

    Re : Le hasard existe-t-il ?

    Citation Envoyé par spi100 Voir le message
    Non, dans les exemples que je cite, il s'agit toujours d'ensembles dénombrables. En particulier le nombre de Chaitin est définit sur l'ensemble des algorithmes qui est dénombrable. Ceci dit oui, tu as raison il y a bien un postulat c'est la thèse de Church-Turing.

    Vouloir parler de physique sans mathématique me parait difficile. Personnellement, je trouve inévitable que la physique aboutisse à des questions de mathématiques et de logique formelle de plus en plus pointues.

    La suite s'adresse plutot à Gillesh.

    C'est Feynman (et oui encore lui) qui a pointé l'importance de l'algorithmie en physique. C'est à lui par exemple que l'on doit la construction la plus simple d'une machine de Turing universelle. Il est à l'origine de la théorie réversible du calcul, tel que l'ont ensuite développé Toffoli and co dans les années 70. Maintenant tout ce courant aboutit à l'algorithmie quantique, et amha tout cela est loin d'être fini. Si les physiciens commencent a réfléchir sur ce qu'est un processus de calcul, dans quel mesure la nature peut être vue comme tel, ils sont forcemment amener à ce poser la question de la limite de ces processus de calculs.

    Quant à l'idée que la physique ne doit manipuler que des quantités observables, que dire de la fonction d'onde de la mécanique quantique, entité non observable par excellence et qui sous-tend tout le calcul des observables. C'est de la pure spéculation, mais si la théorie de l'information de Chaitin permet de caractériser et de construire de façon très fine, différent type de hasards ( suites approximables, non approximables, etc). Peut-être aboutirons - nous à des théories testables de la mesure quantique, et répondre à des questions tel que la nature calculable ou pas de l'univers.

    S'il parait naturel de se poser la question de savoir si la nature est déterministe ou non, je trouve que la question de la calculabilité de l'univers est au moins tout aussi bien posée, elle manipule peut être des concepts plus complexes que la notion de hasard. Mais cette difficulté vient aussi de que les notions utilisés sont clairement définis et que ça demande un réel effort d'abstraction.
    Ne tombe-t-on pas dans ce cas dans la théorie des mondes multiples ou dans la fiction de "Cours Lola cours"?
    Autrement dit si une équation peut avoir plusieurs solutions, pourquoi pas l'univers? et si oui, pourquoi toutes ces solutions n'existeraient-elles pas dans l'infini de l'espace et du temps.

    Anton

  18. #468
    invitefa5fd80c

    Re : Le hasard existe-t-il ?

    Citation Envoyé par gillesh38 Voir le message
    bonjour
    Je ne vois pas très bien ce que la géométrie a a voir avec la Meca Q. Si tu mesures les positions de trois particules, tu ne connais pas d'avance le résultat mais les positions obeissent bien sur à la géométrie habituelle (inégalité triangulaire etc....).
    Bonsoir

    Les positions obéissent à la géométrie habituelle après l'opération de mesure.

    Avant la mesure, rien ne permet d'affirmer que les 3 distances inter-particules obéissent à ces lois (je suppose ici que tu fais référence à trois particules qui, avant la mesure, n'ont pas de positions bien définies, dans le langage de la MQ).

    Pour reprendre quelque chose que je disais dans un autre fil, il me semble bien étrange que les lois de la géométrie soient considérées comme non-perturbées au niveau atomique alors que toutes les autres propriétés de la matière le sont, et de façon très importante. Car en vertu de la RG, le phénomène géométrique est une propriété de la matière et non pas d'une structure ayant une existence propre: il n'y a pas d'arrière-plan.

    Citation Envoyé par gillesh38 Voir le message
    D'autre part si tu ne changes pas la Meca Q, tu n'en fais qu'une interpretation :...
    Effectivement je ne change pas la Meca Q et pour cause: dans le cadre de ma théorie, la Meca Q n'est pas la description la plus fondamentale qui soit du monde physique. Par contre, en tant que description statistique, ma théorie l'admet telle quelle, pour la simple et bonne raison qu'elle fonctionne très bien en tant que description statistique.
    Une description plus fine du monde physique spécifierait tous les systèmes inter-particules individuellement, ce que ne fait pas la Meca Q.

    Citation Envoyé par gillesh38 Voir le message
    ...je ne vois pas comment tu rends compte de la violation des inégalités de Bell sur des mesures de spin par exemple si il y a des varaibles cachées...
    Parce que les variables cachées que j'utilise (les systèmes inter-particules) sont des variables cachées non-locales.

    Pour illustrer la chose, prenons deux particules élémentaires, l'une "se trouvant" dans le laboratoire A et l'autre dans le laboratoire B, les deux laboratoires étant à 10 kilomètres de distance l'un de l'autre. Le système inter-particule associé à ces deux particules peut très bien avoir une "grosseur" (=distance entre les deux particules dans le langage habituel) de 10-13cm

    Citation Envoyé par gillesh38 Voir le message
    (d'ailleurs je ne vois même pas comment tu peux décrire le spin).
    Mathématiquement : de la même façon que présentement, du moins pour une description statistique.

    Qualitativement : les phénomènes de moment angulaire sont tous intimement liés aux rotations. Dans les théories actuelles, il est bien difficile d'imaginer un phénomène de rotation intrinsèque pour un objet ponctuel, considéré sans structure interne. Dans la théorie que je propose, une particule ponctuelle possède une structure interne: l'ensemble des systèmes inter-particules auxquels elle participe. Il y a là toute la latitude voulue pour en arriver à une compréhension de la rotation intrinsèque d'une particule.

    Amicalement

  19. #469
    invite8915d466

    Re : Le hasard existe-t-il ?

    Citation Envoyé par PopolAuQuébec Voir le message
    Bonsoir

    Les positions obéissent à la géométrie habituelle après l'opération de mesure.

    Avant la mesure, rien ne permet d'affirmer que les 3 distances inter-particules obéissent à ces lois (je suppose ici que tu fais référence à trois particules qui, avant la mesure, n'ont pas de positions bien définies, dans le langage de la MQ).
    J'avoue que je ne comprends pas très bien quel sens tu donnes au fait que les particules "ont" une distance si ce n'est pas le résultat que donne leur mesure !

    Je vais vous faire plaisir a tous, je propose moi aussi une interprétation déterministe simple de la Meca Q : il y a un grand livre quelque part dans une partie de l'Univers inobservable (je n'ai pas encore déterminé POURQUOI il est inobservable mais c'est une idée générale de départ). Ce grand livre contient le résultat de toutes les mesures que tous les physiciens feront dans toute l'histoire de l'Univers. Chaque fois qu'un physicien fait une mesure, l'Univers se débrouille pour aller lire dans le grand livre (détails aussi a préciser) et lui donne le résultat requis (bien sûr la liste des résultats écrits dans le Grand Livre satisfait aux répartitions probabilistes prévue par la Meca Q). Donc il y a des variables cachées non locales (ce qui est écrit sur le Grand Livre, et qui n'est pas contenu dans la particule), et la Meca Q est déterministe.

    Pensez vous que ma théorie soit scientifique?

    Cordialement

    Gilles

  20. #470
    invitefa5fd80c

    Re : Le hasard existe-t-il ?

    Citation Envoyé par gillesh38 Voir le message
    J'avoue que je ne comprends pas très bien quel sens tu donnes au fait que les particules "ont" une distance si ce n'est pas le résultat que donne leur mesure !
    Au niveau macroscopique, on sait expérimentalement que les objets ont une distance bien définie entre eux et que ces distances respectent les lois de la géométrie. De plus on sait que l'évolution de ces distances dans le temps est déterministe et est bien décrite par les lois de la physique. Enfin, nous prenons pour acquis, et cela n'a jamais été infirmé, que ces objets ont une distance bien définie entre eux en chaque instant, indépendamment que l'on mesure ou non cette distance (on peut appeler cela une conjecture ou un postulat, c'est au goût). Lorsque tu te rends de ton domicile à ton lieu de travail en empruntant ton trajet habituel, tu sais à l'avance la distance que tu parcoureras, sans même l'avoir mesurée, non ?

    Au niveau microscopique, on sait expérimentalement et théoriquement que le concept de distance est applicable. Dans ma théorie (déterministe), il est alors considéré que la distance entre deux particules est en tout temps bien déterminée, à la différence près d'avec le cas macroscopique que les relations géométriques elles, ne le sont pas. Et ceci m'amène à te poser la question: quel sens donnes-tu à l'énoncé que les lois de la géométrie sont respectées au niveau microscopique: as-tu déjà mesuré des distances et des angles au niveau microscopique et vérifié que les lois de la géométrie y sont respectées ?

    Citation Envoyé par gillesh38 Voir le message
    Je vais vous faire plaisir a tous, je propose moi aussi une interprétation déterministe simple de la Meca Q : il y a un grand livre quelque part dans une partie de l'Univers inobservable (je n'ai pas encore déterminé POURQUOI il est inobservable mais c'est une idée générale de départ). Ce grand livre contient le résultat de toutes les mesures que tous les physiciens feront dans toute l'histoire de l'Univers. Chaque fois qu'un physicien fait une mesure, l'Univers se débrouille pour aller lire dans le grand livre (détails aussi a préciser) et lui donne le résultat requis (bien sûr la liste des résultats écrits dans le Grand Livre satisfait aux répartitions probabilistes prévue par la Meca Q). Donc il y a des variables cachées non locales (ce qui est écrit sur le Grand Livre, et qui n'est pas contenu dans la particule), et la Meca Q est déterministe.

    Pensez vous que ma théorie soit scientifique?
    Et bien cela dépend. Ta théorie prévoit-elle un moyen de vérifier l'existence de ce "grand livre" ? Ou de façon équivalente, l'existence de ce "grand livre" permet-elle de prévoir des phénomènes non prédits par les théories actuelles et susceptibles d'être vérifiés expérimentalement ? Si tu réponds oui à l'une ou l'autre de ces deux questions, et bien ta théorie est scientifique, sinon elle est une théorie logique mais non-scientifique.

    Amicalement

  21. #471
    invite8915d466

    Re : Le hasard existe-t-il ?

    Citation Envoyé par PopolAuQuébec Voir le message
    Au niveau microscopique, on sait expérimentalement et théoriquement que le concept de distance est applicable. Dans ma théorie (déterministe), il est alors considéré que la distance entre deux particules est en tout temps bien déterminée, à la différence près d'avec le cas macroscopique que les relations géométriques elles, ne le sont pas. Et ceci m'amène à te poser la question: quel sens donnes-tu à l'énoncé que les lois de la géométrie sont respectées au niveau microscopique: as-tu déjà mesuré des distances et des angles au niveau microscopique et vérifié que les lois de la géométrie y sont respectées ?
    Ma question est donc : si dans ta théorie une "distance" est bien déterminée, alors que donne la mesure de cette distance ? cette valeur bien déterminée, ou une autre?
    Sinon les lois de la géométrie proviennent de la structure géométrique de l'espace temps et sont plutot décrit par la RG que la Meca Q. La Meca Q *utilise*une géométrie sous-jacente pour y propager des champs. Il y a sûrement un problème quand on descend à l'échelle de Planck, mais ce n'est pas un problème pour la Mécanique quantique "habituelle". Je ne vois donc pas bien en quoi la géométrie est liée au problème de la mesure.

    Et bien cela dépend. Ta théorie prévoit-elle un moyen de vérifier l'existence de ce "grand livre" ? Ou de façon équivalente, l'existence de ce "grand livre" permet-elle de prévoir des phénomènes non prédits par les théories actuelles et susceptibles d'être vérifiés expérimentalement ? Si tu réponds oui à l'une ou l'autre de ces deux questions, et bien ta théorie est scientifique, sinon elle est une théorie logique mais non-scientifique.

    Amicalement
    Assez bonne réponse . Je pourrais te dire : ben oui , l'existence du grand livre est justement prouvée par le résultat des mesures, puisqu'on connait son contenu en mesurant les objets.

    Tu peux être satisfait de ma réponse, ou non . Mais je vais repréciser ma position sur la Meca Q : jusqu'ici , on n'a proposé aucune théorie déterministe pour la Méca Q qui ait un caractère "plus scientifique" que celle du grand livre que je propose .

    Cordialement

    Gilles

  22. #472
    invite7863222222222
    Invité

    Re : Le hasard existe-t-il ?

    on n'a proposé aucune théorie déterministe pour la Méca Q qui ait un caractère "plus scientifique" que celle du grand livre que je propose
    Je crois plus qu'il faille parler d'interprétation plutot que de théorie, CopenHague c'est une interprétation par exemple. Je dirais donc qu'aujourd'hui il n'y a aucune interprétation convenable des résultats de la Physique Quantique.

  23. #473
    invitea20bed5c

    Re : Le hasard existe-t-il ?

    Citation Envoyé par PopolAuQuébec Voir le message
    Une description plus fine du monde physique spécifierait tous les systèmes inter-particules individuellement, ce que ne fait pas la Meca Q...
    ...les variables cachées que j'utilise (les systèmes inter-particules) sont des variables cachées non-locales...
    ...Dans la théorie que je propose, une particule ponctuelle possède une structure interne: l'ensemble des systèmes inter-particules auxquels elle participe...
    Bonjour,
    j'ai écrit que si une particule isolée n'avait pas de réalité physique alors une théorie quantique déterministe était impossible.
    Mais si je comprends bien, tu te proposes de décrire une particule comme étant fonction de toutes les autres particules de l'univers ??? C'est bien ca ?
    Gilles

  24. #474
    invitea20bed5c

    Re : Le hasard existe-t-il ?

    Citation Envoyé par gillesh38 Voir le message
    Je vais vous faire plaisir a tous, je propose moi aussi une interprétation déterministe simple de la Meca Q : il y a un grand livre quelque part dans une partie de l'Univers inobservable (je n'ai pas encore déterminé POURQUOI il est inobservable mais c'est une idée générale de départ). Ce grand livre contient le résultat de toutes les mesures que tous les physiciens feront dans toute l'histoire de l'Univers. Chaque fois qu'un physicien fait une mesure, l'Univers se débrouille pour aller lire dans le grand livre (détails aussi a préciser) et lui donne le résultat requis (bien sûr la liste des résultats écrits dans le Grand Livre satisfait aux répartitions probabilistes prévue par la Meca Q). Donc il y a des variables cachées non locales (ce qui est écrit sur le Grand Livre, et qui n'est pas contenu dans la particule), et la Meca Q est déterministe.

    Pensez vous que ma théorie soit scientifique?
    Il y a plus simple : à tout moment, et également au moment où on mesure une de ces propriétés, une particule est définie par son état précédent ainsi que celui de toutes les autres particules de l'univers (interconnexion quantique proposée par certains grands nom de la MQ). Ces autres particules sont les variables cachées non locales.
    Cette théorie, comme la tienne, n'est pas scientifique car elle ne peut pas être vérifiée expérimentalement.

  25. #475
    invite8915d466

    Re : Le hasard existe-t-il ?

    Citation Envoyé par BBFaïta Voir le message
    Il y a plus simple : à tout moment, et également au moment où on mesure une de ces propriétés, une particule est définie par son état précédent ainsi que celui de toutes les autres particules de l'univers (interconnexion quantique proposée par certains grands nom de la MQ). Ces autres particules sont les variables cachées non locales.
    Cette théorie, comme la tienne, n'est pas scientifique car elle ne peut pas être vérifiée expérimentalement.
    Non, c'est un peu plus compliqué parce que si tu dis ça il faut que tu précises comment le résultat de la mesure sur une particule se déduit de l'état des autres particules. Le Grand Livre se réduit à l'essentiel : un catalogue des résultats de mesure . A part ça ce n'est bien sur ni plus ni moins prouvable !

  26. #476
    JPL
    Responsable des forums

    Re : Le hasard existe-t-il ?

    Petit avertissement pour théorie indémontrable. Rappel de la charte du forum :

    outes idées ou raisonnement (aussi géniaux soient ils) doivent reposer sur des faits scientifiquement établis et non sur de vagues suppositions personnelles, basées sur d'intimes convictions.
    Rien ne sert de penser, il faut réfléchir avant - Pierre Dac

  27. #477
    spi100

    Re : Le hasard existe-t-il ?

    Je suis tombé sur cet article du new scientist

    http://www.newscientist.com/channel/...mg19025504.000

    Il parle d'une théorie de t'Hooft (prix nobel de physique 99). Cette théorie suppose un monde physique sous l'échelle de planck, complètement déterministe mais invisible, qui sous - tend notre réalité visible qui elle parait indéterministe.

    Des systèmes très élémentaires exhibent ce type de comportement. Comme par exemple l'automate cellulaire de Conway.
    Ce réseau est construit sur une règle très simple qui régit l'état allumé ou éteint d'une cellule en fonction de l'état de ses voisines. Des objets macroscopiques avec des comportements propres émergent ( glisseur, etc), et interragissent. On peut étudier le comportement de ces objets macroscopiques en ignorant complètement leur nature microscopique.

    On ne peut pas prédire à longtemps terme le comportement du réseau, et l'on doit se restreindre à un traitement probabiliste (théorie champ moyen et ordres supérieures). Même si le comportement microscopique, i.e. la règle qui régit l'évolution des cellules est parfaitement déterminée, le comportement macro i.e. l'évolution des objets macroscopiques émergeants, lui est imprédictible.
    Dernière modification par spi100 ; 16/01/2007 à 12h25.
    GCS/S s: a C++ DI++>+++ UL++A++HIS++$ P++>+++$ E+>++$ W+>++$ N+ Y+ e++++ t+++ y+++

  28. #478
    invite8915d466

    Re : Le hasard existe-t-il ?

    difficile de contredire quelqu'un comme t'Hooft !
    mais encore une fois il est tout a fait imaginable qu'on puisse trouver une théorie satisfaisante déterministe qui remplace la Meca Q ! je dis juste que pour le moment on n'en a pas , et il ne me semble pas que celle de t'Hooft ait encore acquis ce statut. Neanmoins je pense qu'une théorie devrait remanier profondément le concept de réalité, et pas juste essayer de donner des "propriétés" aux particules telles que nous les connaissons, et ça me parait compatible avec ce que dit t'Hooft.

    Sinon c'est marrant de voir réapparaitre l'angoisse devant la disparition du libre arbitre ! . Sur ce plan là, les physiciens théoriciens me paraissent à coté de la plaque, parce qu'il est très peu probable que l'indéterminisme quantique ait réellement quelque chose à voir avec le libre arbitre : il n'y a pas d'appareil de mesure quantique dans le cerveau !

  29. #479
    invitefa5fd80c

    Re : Le hasard existe-t-il ?

    Citation Envoyé par gillesh38 Voir le message
    Ma question est donc : si dans ta théorie une "distance" est bien déterminée, alors que donne la mesure de cette distance ? cette valeur bien déterminée, ou une autre?
    Bonjour

    Si avant la mesure les deux particules sont caractérisées par deux positions bien définies alors la distance mesurée sera la distance associée à ces deux positions. Sinon, la distance mesurée aura une valeur se trouvant dans le spectre des distances possibles entre les deux particules en vertu de l'étalement des deux positions associées aux particules.

    Citation Envoyé par gillesh38 Voir le message
    Assez bonne réponse . Je pourrais te dire : ben oui , l'existence du grand livre est justement prouvée par le résultat des mesures, puisqu'on connait son contenu en mesurant les objets.
    Le "grand livre" et les résultats de mesures sont deux choses distinctes.
    On peut démontrer l'existence du "grand livre" en permettant de constater l'existence d'un objet autre que les résultats de mesures et contenant ceux-ci, ou sinon en prédisant en vertu de l'existence de ce "grand livre" des phénomènes non prédits par les théories actuelles et susceptibles d'être vérifiés expérimentalement.

    Citation Envoyé par gillesh38 Voir le message
    Tu peux être satisfait de ma réponse, ou non . Mais je vais repréciser ma position sur la Meca Q : jusqu'ici , on n'a proposé aucune théorie déterministe pour la Méca Q qui ait un caractère "plus scientifique" que celle du grand livre que je propose .
    Quels sont pour toi les critères qui feraient d'une théorie quantique déterministe une théorie "plus scientifique" que la théorie du "grand livre" ?

    Amicalement

  30. #480
    invite8915d466

    Re : Le hasard existe-t-il ?

    Citation Envoyé par spi100 Voir le message
    On ne peut pas prédire à longtemps terme le comportement du réseau, et l'on doit se restreindre à un traitement probabiliste (théorie champ moyen et ordres supérieures). Même si le comportement microscopique, i.e. la règle qui régit l'évolution des cellules est parfaitement déterminée, le comportement macro i.e. l'évolution des objets macroscopiques émergeants, lui est imprédictible.
    Une petite remarque en passant : l'originalité de la Meca Q n'est pas tant de manier des quantités aléatoires (ce que fait la meca stat classique) que de prescrire des règles bizarres qui mélangent déterminisme et indéterminisme.

    Par exemple si tu mesures le spin Oz d'une particule d'une paire corrélée, et que tu connais auparavant le résultat d'une mesure sur l'autre particule :
    * si cette mesure a aussi été faite sur Oz , tu connais avec certitude à l'avance le résultat de ta mesure.
    * si cette mesure a été faite sur un autre axe, tu n'as plus que des probabilités qui atteignent 50-50 quand cet axe est perpendiculaire.

    Je te défie de construire un réseau qui ait ces propriétés . Tu ne peux d'ailleurs pas y arriver sans des propriétés non locales, mais la difficulté sera l'analogue de la projection du paquet d'onde : implémenter un algorithme qui décrive exactement ce que c'est qu'une mesure.

Page 16 sur 20 PremièrePremière 16 DernièreDernière

Discussions similaires

  1. Le hasard existe-t-il ?
    Par invite28846bbe dans le forum Discussions scientifiques
    Réponses: 2
    Dernier message: 30/04/2005, 17h01