Quel est la probabilité qu'un énoncé soit indécidable ?
26/05/2018, 00h48
#1
invite36041331
Date d'inscription
août 2017
Messages
1 282
Quel est la probabilité qu'un énoncé soit indécidable ?
------
Bonsoir,
Quel est la probabilité qu'un énoncé bien formulé dans AP (Arithmétique de Peano) soit indécidable (avec un tirage uniforme) ?
1/Négligeable
2/Non négligeable, petite
3/Non négligeable, proche de 1
4/Négligeable qu'il ne soit pas indécidable.
Bonne soirée.
-----
Aujourd'hui
Publicité
26/05/2018, 09h50
#2
CM63
Date d'inscription
juin 2006
Localisation
Un peu au large de la faille de Limagne
Âge
68
Messages
4 263
Re : Quel est la probabilité qu'un énoncé soit indécidable ?
Bonjour,
Cliquez pour afficher
Étant donné qu'il y a une infinité indénombrable d'énoncé indécidable, alors que les théorèmes (et les assertions fausses) sont en infinité dénombrable, mon avis est que cette probabilité est égale à 1. Mais ce n'est que mon avis
26/05/2018, 11h55
#3
Médiat
Date d'inscription
août 2006
Âge
70
Messages
19 273
Re : Quel est la probabilité qu'un énoncé soit indécidable ?
Pourquoi un "débat" alors que le résultat est bien connu (voir, entre autres les travaux de Levin), les mathématiques ne se décrètent par vote à la majorité !
Bref un troll de plus sur le compte de cet "auteur".
Je suis Charlie.
J'affirme péremptoirement que toute affirmation péremptoire est fausse
26/05/2018, 12h14
#4
invite36041331
Date d'inscription
août 2017
Messages
1 282
Re : Quel est la probabilité qu'un énoncé soit indécidable ?
Envoyé par Médiat
1/ Pourquoi un "débat" alors que le résultat est bien connu (voir, entre autres les travaux de Levin),
2/ les mathématiques ne se décrètent par vote à la majorité !
1/ Pourrais-tu donner un lien, merci ?
2/ Dans certains cas si, comme par exemple le choix de rendre 1 non premier en France, le choix du sens du cercle trigo...
Aujourd'hui
A voir en vidéo sur Futura
26/05/2018, 13h16
#5
Médiat
Date d'inscription
août 2006
Âge
70
Messages
19 273
Re : Quel est la probabilité qu'un énoncé soit indécidable ?
1) On ne va pas tout faire à votre place
2) Que 1 soit premier ou non n'est pas un résultat mathématique, mais une définition !
Cessez de polluer ce forum en permanence avec vos trolls sans intérêt !
Je suis Charlie.
J'affirme péremptoirement que toute affirmation péremptoire est fausse
26/05/2018, 13h22
#6
pm42
Date d'inscription
juillet 2015
Messages
10 286
Re : Quel est la probabilité qu'un énoncé soit indécidable ?
Je plussoie Mediat...
Mais sur le sujet, j'ai trouvé intéressant l'article dans le Pour La Science de mars ou avril : "Les indécidables absolus existent-ils ?".
Aujourd'hui
Publicité
26/05/2018, 13h33
#7
invite36041331
Date d'inscription
août 2017
Messages
1 282
Re : Quel est la probabilité qu'un énoncé soit indécidable ?
Envoyé par Médiat
1) On ne va pas tout faire à votre place
2) Que 1 soit premier ou non n'est pas un résultat mathématique, mais une définition !
3) Cessez de polluer ce forum en permanence avec vos trolls sans intérêt !
2- Les conséquences du fait que 1 n'est plus premier, ne sont pas des définitions mais des théorèmes, comme celui de l'unicité de la décomposition en nombre premier.
3- Je peux comprendre que mes centres d’intérêt ne t'intéresse pas du tout : on ne peut pas plaire à tout le monde.
Mais il peut y avoir des lecteurs ou d'autres participants intéresser pas le sujet, merci de respecter cela.
26/05/2018, 15h12
#8
CM63
Date d'inscription
juin 2006
Localisation
Un peu au large de la faille de Limagne
Âge
68
Messages
4 263
Re : Quel est la probabilité qu'un énoncé soit indécidable ?
Envoyé par Dattier
le choix de rendre 1 non premier en France
Pas du tout, c'est dans la définition (de la primalité, pas de 1) et cela n'a rien de spécifique à la France. Mais cela a maintes fois été débattu , inutilement, donc.
26/05/2018, 15h27
#9
pm42
Date d'inscription
juillet 2015
Messages
10 286
Re : Quel est la probabilité qu'un énoncé soit indécidable ?
Envoyé par CM63
Pas du tout, c'est dans la définition (de la primalité, pas de 1) et cela n'a rien de spécifique à la France. Mais cela a maintes fois été débattu , inutilement, donc.
La partie entre crochet, a été ajouter par mes soins, et ne fait pas partie du texte orginal, pour préciser le théorème dont il est question.
26/05/2018, 16h41
#11
Médiat
Date d'inscription
août 2006
Âge
70
Messages
19 273
Re : Quel est la probabilité qu'un énoncé soit indécidable ?
Envoyé par Dattier
2- Les conséquences du fait que 1 n'est plus premier, ne sont pas des définitions mais des théorèmes, comme celui de l'unicité de la décomposition en nombre premier.
N'IMPORTE QUOI ! Comme d'habitude ! Ce que votre message suivant confirme !!!
Dernière modification par Médiat ; 26/05/2018 à 16h43.
Je suis Charlie.
J'affirme péremptoirement que toute affirmation péremptoire est fausse
26/05/2018, 16h52
#12
Médiat
Date d'inscription
août 2006
Âge
70
Messages
19 273
Re : Quel est la probabilité qu'un énoncé soit indécidable ?
Envoyé par pm42
Mais sur le sujet, j'ai trouvé intéressant l'article dans le Pour La Science de mars ou avril : "Les indécidables absolus existent-ils ?".
Bonjour pm42 et merci pour cette information, mais je n'ai accès qu'au début de l'article, je peux néanmoin dire :
1) La notion d'indécidable absolue me paraît "bizarre", il faudrait en voir la définition
2) Prendre comme exemple de formule indécidable dans une théorie qui ne l'est plus dans une autre, les indécidables de AP qui ne le sont pas dans ZFC (le théorème de Goodstein-Paris-Kirby en est un très bel exemple) ne m'apparaît pas judicieux (cela donne l'impression que ce n'est pas facile à trouver) alors que si f est une formule indécidable de T, elle ne l'est plus dans T U {f} qui est une théorie iso-consistante avec T (ce dernier point peut être discutaillé sur le rebord d'un comptoir, mais je n'en ai pas de disponible)
Je suis Charlie.
J'affirme péremptoirement que toute affirmation péremptoire est fausse
Aujourd'hui
Publicité
26/05/2018, 17h25
#13
invite36041331
Date d'inscription
août 2017
Messages
1 282
Re : Quel est la probabilité qu'un énoncé soit indécidable ?
Envoyé par Médiat
N'IMPORTE QUOI ! Comme d'habitude ! Ce que votre message suivant confirme !!!
Ce message consiste en 2 citations une de wiki et l'autre du site math.cnrs.fr
XXXXXXXXX
Dernière modification par Cendres ; 26/05/2018 à 17h53.
Motif: Tu n'as pas à décider qui est intéressé et qui peut participer. Pour qui te prends-tu? Personne n'est propriétaire d'un sujet
26/05/2018, 17h53
#14
Médiat
Date d'inscription
août 2006
Âge
70
Messages
19 273
Re : Quel est la probabilité qu'un énoncé soit indécidable ?
Envoyé par Dattier
Ce message consiste en 2 citations une de wiki et l'autre du site math.cnrs.fr
Et bien essayez de les comprendre pour une fois.
Je suis Charlie.
J'affirme péremptoirement que toute affirmation péremptoire est fausse
26/05/2018, 18h53
#15
Médiat
Date d'inscription
août 2006
Âge
70
Messages
19 273
Re : Quel est la probabilité qu'un énoncé soit indécidable ?
Envoyé par pm42
Mais sur le sujet, j'ai trouvé intéressant l'article dans le Pour La Science de mars ou avril : "Les indécidables absolus existent-ils ?".
J'ai pu en apprendre plus sur ce concept (grâce à pm42), c'est un truc de platoniciens, donc, au sens strict, pas des mathématiques pures (non entachées de philosophie)
Je suis Charlie.
J'affirme péremptoirement que toute affirmation péremptoire est fausse
28/05/2018, 11h49
#16
obi76
Modérateur*
Date d'inscription
mai 2007
Localisation
Marseille
Âge
36
Messages
17 956
Re : Quel est la probabilité qu'un énoncé soit indécidable ?
Bon allez, stop au trollage.
Pour la modération,
Paradoxalement, ce sont les débats stériles qui se reproduisent le plus.