bonjour je n'arrive pas à répondre à certaines questions d'un exercice de mon dm. Pourriez-vous m'aider svp.
voici l'énoncé:

soit f(x)= xe^(-x) défini sur R et C sa courbe représentative .

PARTIE A : étude de f

il faut déterminer les limites en + et -infini , variations de f et une équation de la tangente T à C en son point d'abscisse 0.

5) montrer que pour tout réel x , e^x >ou= (1+x).

6) en déduire que pour tout réel positif x, f(x) <ou= x/(x+1)


PARTIE B : une suite récurrente

on définit la suite (Un ), n€N* par U1 =1 et pour tout n€N*, U(n+1) = f(Un)

3) en utilisant l'inégalité établie dans la partie A 6) , démonter que par récurrence que
pour tout entier n supérieur à 1 , 0< Un <ou= (1/n).

4) en déduire que Un est convergente

5) étudier la monotonie de (Un), n€N*.

on pose pour n€N* , Sn= E(n termes et k=1) Uk. (E: somme)

6) vérifier que pour tout entier n >ou= 1, Un+1=e^(-Sn).

7) quelle pourrait-être la limite de ( Sn) , n€N* ?


je n'arrive pas à faire le 3) 5) 6) et 7) de la PARTIE B.

voici ce que j'ai trouvé : B

3) soit Pn la propriété "0< Un <ou= (1/n)".
…on trouve que Po est vraie .
supposons que Pn est vraie puis montrons que P(n+1) est vraie aussi:
comme on admet que 0< Un <ou= (1/n) alors
0< Un.e^(-Un) <ou= (1/n).e^(-Un)
soit 0< U(n+1) <ou= 1/(n.e^(Un))

or e^Un >ou= 1+Un d'après A 5)

donc n.e^Un >ou= n.(1+Un)
soit 1/(n.e^Un) <ou= 1/(n.(1+Un))
donc 0< U(n+1) <ou= 1/(n.e^(Un)) <ou= 1/(n.(1+Un))

soit 0< U(n+1) <ou= 1/(n.(1+Un)).

Or Un <ou= (1/n)

soit Un+1 <ou= (1/n)+1
soit n(Un+1) <ou= n((1/n)+1)
soit 1/(n(Un+1)) <ou= 1/(1+n)
(le résultat serait bon mais le problème est que 1/(n(Un+1)) >ou= 1/(1+n) )

donc 0< U(n+1) <ou= 1/(n(Un+1)) <ou= 1/(1+n)
soit 0< U(n+1) <ou= 1/(1+n)

5) la suite est croissante ssi (U(n+1)/Un) > 1
or on a : U(n+1)=Un.e^(-Un)
soit U(n+1)/Un=e^(-Un)
or e^(-Un) >ou= 0
donc (U(n+1)/Un) > 0 et non 1 donc je ne vois pas si elle est monotone .

pour la 6) et 7) je ne comprends rien.


MERCI de m'aider