Dm logarithme exponentielle
Répondre à la discussion
Affichage des résultats 1 à 15 sur 15

Dm logarithme exponentielle



  1. #1
    invite3ac51b88

    Dm logarithme exponentielle


    ------

    Bonjour j'ai un dm de math a faire sur la fonction exponentielle et logarithme j'espere que vous pourrez m'aider...

    Partie1 :
    demontrer que pour tout rel x<1, on a
    e(x)<= 1/(1-x)

    On pourra etudier les variations de la fonction g definie sur ]-oo;1]
    g(x)=(1-x)e(x) -1

    Pour quelles valeurs de x a ton egalité?

    Partie 2
    On considere la fonction f defeinie sur ]-oo;1] par
    f(x)=e(x)+ln(1-x)

    1) expliquer pourquoi la fonction f est definie sur ]-oo,1]
    2) etudier les limites en -oo et 1(a gauche)
    3) etudier les variations de la fonction f ( on pourra utiliser les résultats de a parie 1)
    4) tracer soigneseument la courbe representative de la fonction f

    je l'ai posté, j'enverrai mes reponses prochainement

    -----

  2. #2
    invite3ac51b88

    Re : Dm logarithme exponentielle

    alors les reponses viennent petit a petit lol
    Pour la partie 1

    En ce qui concerne les variations de g on a
    g(x)= (1-x) ex -1
    soit u(x)=1-x v(x)=v'(x)=ex
    u'(x)=-1

    g'(x)=-ex-(1-x)ex

    -ex>0
    -(1-x)>0
    ex<0 pr x ]-oo;1]
    donc g est croissante...?

    ex=1/(1-x)
    ex(1-x) -1 =0
    ex-xex-1=0
    je verrais sa plus tard parce que je bloque la

    Partie 2

    1) la fonction est une somme de fonction l'une definie sur R et ln sur ]0,+oo[
    1-x>0 pr x<1
    ce qui explique lintervalle consideré

    2)limite de ex en -00 =0
    lim ln(1-x)=-00
    par somme lim f(x) en -oo= 0

    lim en 1 de ex=0
    lim en 1 de ln(1-x)=-oo mais je suis pas sur...

    3)f'(x)=ex - 1/(1-x)

    ex<0
    1>0
    1-x>0
    la fonction f est decroissante
    dautant plus que g est croissante ( mais on a un - devant ex - 1/(1-x) et pr la fonction f c'est pas le cas)

    j'accepte toute les aides !!!!!!!!
    ( j'ai redigé rapidement parce que je suis pressé donc j'espere que vous comprendrez quand meme
    bien evidement pour la redaction de mon dm je serais beaucoup plus rigoureuse)

  3. #3
    invite3ac51b88

    Re : Dm logarithme exponentielle

    pleaze jetez y un coup d'oeil et essayer de me répondre !!

  4. #4
    invitefc60305c

    Re : Dm logarithme exponentielle

    Pour la 1er question de la 1er partie, de manière générale, pour montrer que on étudie
    Pour la suite, est fausse.

    Pour la partie 2, revois la limite en de ln(1-x).
    La limite en 1 est bonne.
    Et est bonne.

  5. A voir en vidéo sur Futura
  6. #5
    invite3ac51b88

    Re : Dm logarithme exponentielle

    Oui mais pour la partie 1 on nous demande de repondre a la question en etudiant les variations....

    Pour ce qui est de g'(x) j'avais mis
    g(x)= (1-x) ex -1
    soit u(x)=1-x v(x)=v'(x)=ex
    u'(x)=-1

    g'(x)=-ex-(1-x)ex

    Mais c'est un + qu'il faut (u'v+uv'.. nan?)
    g'(x)=-ex+(1-x)ex

    on a -ex<0
    (1-x)>0 car x appartient a ]-oo;1[
    et ex>o
    Dans ce cas la la suite est decroissante... mais c'est pas ce que me donne la calcullatrice elle est censée etre croissante puis decroissante

    Pour la limite en -oo de ln(1-x) vaut +oo

  7. #6
    invite8d4af10e

    Re : Dm logarithme exponentielle

    Citation Envoyé par fany93 Voir le message
    Oui mais pour la partie 1 on nous demande de repondre a la question en etudiant les variations....

    Pour ce qui est de g'(x) j'avais mis
    g(x)= (1-x) ex -1
    soit u(x)=1-x v(x)=v'(x)=ex
    u'(x)=-1

    g'(x)=-ex-(1-x)ex

    Mais c'est un + qu'il faut (u'v+uv'.. nan?)
    g'(x)=-ex+(1-x)ex
    Bonjour
    g(x)= f(x)*h(x) comme tu l'as ecrit ;
    au fait dans l'hypothese où ( comme tu l'as ecris):
    ex-1 , j'imagine que c'est exp(x-1) , dans ce cas , je trouve :
    g'(x)= -x*exp(x-1) .

  8. #7
    invite3ac51b88

    Re : Dm logarithme exponentielle

    heu nan c'est vrai j'ai pas été tres clair c'est
    exp(x) - 1

  9. #8
    invite8d4af10e

    Re : Dm logarithme exponentielle

    Citation Envoyé par fany93 Voir le message

    g'(x)=-ex-(1-x)ex

    Mais c'est un + qu'il faut (u'v+uv'.. nan?)
    g'(x)=-ex+(1-x)ex
    mets exp(x) en Facteur , tu verras + clair .

  10. #9
    invite3ac51b88

    Re : Dm logarithme exponentielle

    g'(x)=-ex+(1-x)ex
    g'(x)=ex(-1+(1-x))

    mais sa change rien j'ai toujours les memes variation qu'au dessus...

  11. #10
    invite8d4af10e

    Re : Dm logarithme exponentielle

    Citation Envoyé par fany93 Voir le message
    g'(x)=-ex+(1-x)ex
    g'(x)=ex(-1+(1-x))

    mais sa change rien j'ai toujours les memes variation qu'au dessus...
    Bonjour
    je n'ai pas dit le contraire c'est juste pour avoir une forme + elegante
    g'(x)=exp(-1+(1-x))= exp (-x)

  12. #11
    invite3ac51b88

    Re : Dm logarithme exponentielle

    Oui mais dans ce cas la si
    g'(x)=exp(-x)
    On a g qui est strictement decroissante mais c'est pas ce que j'ai quand je rentre la fonction dans ma calculatrice ....
    svpp aidez moi je dois le rendre demain ce dm...

  13. #12
    invite8d4af10e

    Re : Dm logarithme exponentielle

    Citation Envoyé par fany93 Voir le message
    Oui mais dans ce cas la si
    g'(x)=exp(-x)
    On a g qui est strictement decroissante mais c'est pas ce que j'ai quand je rentre la fonction dans ma calculatrice ....
    svpp aidez moi je dois le rendre demain ce dm...
    Bonjour
    je trouve g'(x)=-exp(-x)
    sur ]-00 ,1] g'(x) <0 => ton inegalité est demontrée.

  14. #13
    invite8d4af10e

    Re : Dm logarithme exponentielle

    Citation Envoyé par jamo Voir le message
    Bonjour
    je trouve g'(x)=-exp(-x)
    sur ]-00 ,1] g'(x) <0 => ton inegalité est demontrée.
    Bonjour
    desolé J'ai commis une bourde :
    je trouve :
    g'(x)=-x*exp(-x)
    es-tu sur que c'est ]-infini ,1] ?
    sur ]-infini ,0] croissante & sur[0,1] decroissante
    encore navré

  15. #14
    invitea7fcfc37

    Re : Dm logarithme exponentielle

    Bonjour,

    C'est plutôt :

    g'(x) = -x*ex

    En étudiant le signe de g', on obtient bien g croissante sur ]-oo;0] et décroissante sur [0;1]. Ca ne pose pas de problème, il suffit de calculer g(0)

  16. #15
    invite3ac51b88

    Re : Dm logarithme exponentielle

    c'est bon merci pour tout!
    c'est ce que j'avais finalement trouvé

Discussions similaires

  1. PB de logarithme
    Par invite77925936 dans le forum Mathématiques du supérieur
    Réponses: 11
    Dernier message: 18/06/2009, 15h42
  2. logarithme (ln)
    Par invite33d8be82 dans le forum Mathématiques du collège et du lycée
    Réponses: 7
    Dernier message: 31/01/2007, 16h41
  3. limite de fonction logarithme/exponentielle
    Par Seirios dans le forum Mathématiques du collège et du lycée
    Réponses: 3
    Dernier message: 08/10/2006, 14h08
  4. Logarithme et exponentielle...
    Par invite6cbab356 dans le forum Science ludique : la science en s'amusant
    Réponses: 2
    Dernier message: 06/01/2006, 21h34