Répondre à la discussion
Affichage des résultats 1 à 7 sur 7

Problème pour la décomposition d'une fonction. [TS]



  1. #1
    ZaKaR

    Problème pour la décomposition d'une fonction. [TS]


    ------

    bonjour tout le monde, c'est mon 1er post sur ce forum (que je suis depuis un moment sans intervenir).
    Je pense donc être dans la bonne section, dans le cas contraire veuillez m'en excuser.

    Voila, il se trouve que j'ai un probleme au niveau d'un exercice d'intégrales (bien que cela n'est pas spécifique aux integrales.Je me lance.
    ______________________________ ________________________

    Soit la fonction définie sur ]1;+oo[ par :





    -Déterminer les réels a,b et c tels que l'on ait pour tout x>1 :




    ______________________________ ________________________

    J'ai bien remarqué que x(x2-1) = x(x+1)(x-1) ; mais je suis bloqué depuis un moment , sans doute une méthode de décomposition que je ne maitrise pas.

    Merci beaucoup de votre future aide

    -----

  2. Publicité
  3. #2
    invite67423456789

    Re : Problème pour la décomposition d'une fonction. [TS]

    l'astuce ici, c'est de multiplier par le denominateur du coefficient que tu cherches et de remplacer x par la valeur pour laquelle ce deno s'annule
    pour a :
    tu multiplies tout par x, et pour x=0 a droite il te restera "a"
    et a gauche tu auras 1/-1 = -1
    d'ou a = -1 etc...

  4. #3
    beltime

    Re : Problème pour la décomposition d'une fonction. [TS]

    Méthode d'identification.

    Tu mets la deuxième équation sous le même dénominateur, et tu identifies un à un les différents éléments.

  5. #4
    invite67423456789

    Re : Problème pour la décomposition d'une fonction. [TS]

    En fiat je ne sais pas si la méthode par identification marche toujours
    il m'est arrivé d'avoir 3 conditions sans aboutir a 3 resultats identiques...
    par exemple dans:

    en revenant sur le meme denominateur dans la DES tu ne retrouves pas ce que tu avais a gauche initialement

  6. #5
    ZaKaR

    Re : Problème pour la décomposition d'une fonction. [TS]

    (je ne peux pas éditer mon premier message)

    ______________________________ _______________________

    Soit la fonction définie sur ]1;+oo[ par :





    -Déterminer les réels a,b et c tels que l'on ait pour tout x>1 :




    ______________________________ ________________________

    Je me suis rendu compte que j'avais commis une faute de frappe , c'est bien les coefficients a b et c

    Je ne sais pas si cela change la facon de faire ?

    Pour la 1ere methode:

    Si j'ai donc compris , il faut se mettre dans le cas ou :



    Puis multiplier des de cotés par x , puis admettre x=0 ?

    je tomberais sur :



    et ensuite ? , pour x=0 , on avait admis a la base pour tout x>1... je ne comprends donc pas.


    Pour la méthode d'identification :


    Je trouve :



    Par identification :

    mais ensuite ?

    J'avoue que je ne comprends pas vraiment comment faire, quelque chose doit m'echapper.

  7. A voir en vidéo sur Futura
  8. #6
    carter21

    Re : Problème pour la décomposition d'une fonction. [TS]

    Bonjour Zakar. Fait moi donc rêver

    Si tu développais tout ça de façon a mettre les x² et x en facteur ? car dans l'expression que tu dois identifier, il n'ya pas de x ni x², il faut donc que les facteurs devant x ( donc composé de a, b et c ) s'annulent ( enfin c'est comme ça que j'ai fait)

  9. Publicité
  10. #7
    ZaKaR

    Re : Problème pour la décomposition d'une fonction. [TS]

    Eh bien , pas évidente cete question :
    Voila la methode , qui semble etre la bonne , (Merci Carter 21 ).
    Ca peut sans doute servir à quelqu'un qui aura un jour peut etre le meme probleme!

    on a donc :
    et on souhaite trouver a , b et c tel que l'on ai :

    On developpe donc la forme avec a b et c , on trouve :







    On développe , on a donc :





    Par identification :


    a + b + c = 0
    -b + c = 0
    -a = 1

    b + c = -a
    b = c
    a = -1

    b + b = 1 car b = c

    2b = 1

    et donc b = 1/2 , c = 1/2 et a = -1

    Voila , je pense que les resultats sont bons (vérifiés par carter21)


Sur le même thème :

Discussions similaires

  1. Décomposition d'une fonction.
    Par blinki974 dans le forum Mathématiques du supérieur
    Réponses: 11
    Dernier message: 22/10/2008, 18h08
  2. Nom d'une méthode pour trouver le max d'une fonction inconnue
    Par hypermecanix dans le forum Mathématiques du supérieur
    Réponses: 13
    Dernier message: 28/11/2007, 15h22
  3. Etude d'une fonction et problème électrotechnique
    Par ploisa dans le forum Mathématiques du collège et du lycée
    Réponses: 2
    Dernier message: 29/05/2007, 18h04
  4. Expression d'une suite (Un)n en fonction du U0, problème !
    Par Gucci-style dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 12/04/2007, 16h18
  5. pb pour montrer la périodicité d'une fonction
    Par glop dans le forum Mathématiques du supérieur
    Réponses: 10
    Dernier message: 01/12/2006, 02h04