Incompréhension correction arithmétique.
Répondre à la discussion
Affichage des résultats 1 à 9 sur 9

Incompréhension correction arithmétique.



  1. #1
    invited622d663

    Question Incompréhension correction arithmétique.


    ------

    Bonsoir

    J'ai du mal à comprendre une correction sur un exercice de math. voici la chose :

    Le lien est le suivant pour voir l'exercice en entier, j'ai recree un topic car j'ai besoin d'une réponse rapide étant donné que j'ai une interro cette semaine en spécialité math.
    http://forums.futura-sciences.com/post1104688.html
    1 a)

    En remarquant que N = M+2, déterminer le PGCD de M et N

    Et bien, le correcteur a écrit :

    PGCD(N,M) = PGCD(M,2) comme M >2 et M impaire , PGCD(N,M)=1

    Et bien la fin j'ai compris et c'est logique, mais le début je ne comprend pas le passage PGCD(N,M)=PGCD(M,2) car N=M+2

    Merci d'avance.

    -----

  2. #2
    invite03f2c9c5

    Re : Incompréhension correction arithmétique.

    Bonsoir, cela se base sur la propriété (par ailleurs très simple à prouver) : si c divise a et b, alors il divise toute combinaison du type au+bv (a, b, c, u, v étant des entiers bien sûr).

  3. #3
    invitef4181796

    Re : Incompréhension correction arithmétique.

    Citation Envoyé par stross Voir le message
    Bonsoir

    J'ai du mal à comprendre une correction sur un exercice de math. voici la chose :

    Le lien est le suivant pour voir l'exercice en entier, j'ai recree un topic car j'ai besoin d'une réponse rapide étant donné que j'ai une interro cette semaine en spécialité math.
    http://forums.futura-sciences.com/post1104688.html
    1 a)

    En remarquant que N = M+2, déterminer le PGCD de M et N

    Et bien, le correcteur a écrit :

    PGCD(N,M) = PGCD(M,2) comme M >2 et M impaire , PGCD(N,M)=1

    Et bien la fin j'ai compris et c'est logique, mais le début je ne comprend pas le passage PGCD(N,M)=PGCD(M,2) car N=M+2

    Merci d'avance.
    Appelle P le PGCD de N et N+2. P divise N et N+2, donc aussi N+2-N=2.
    Donc P=1 ou 2. Si N est impair, P=1. (et si N est pair, P=2).

  4. #4
    invite1237a629

    Re : Incompréhension correction arithmétique.

    C'est aussi la propriété de la division euclidienne

  5. A voir en vidéo sur Futura
  6. #5
    invited622d663

    Re : Incompréhension correction arithmétique.

    à d'accord !!! Merci bien vous me débloquer

  7. #6
    invited622d663

    Re : Incompréhension correction arithmétique.

    Je me demandais là :

    Peut-on écrire généralement

    PGCD(b,b+a)= PGCD(b,a) ??? b et a entier naturel

  8. #7
    invite03f2c9c5

    Re : Incompréhension correction arithmétique.

    Citation Envoyé par stross Voir le message
    Je me demandais là :

    Peut-on écrire généralement

    PGCD(b,b+a)= PGCD(b,a) ??? b et a entier naturel
    Oui, à l'aide de la propriété que j'ai rappelée plus haut, tu peux facilement montrer que les diviseurs communs à a et b sont exactement les diviseurs communs à b et b+a. En particulier, le plus grand d'entre eux coïncide.

  9. #8
    invite1237a629

    Re : Incompréhension correction arithmétique.

    Yes, mais là, la démonstration n'est pas aussi facile

    Soit d = pgcd(b, b+a) et d' = pgcd(b,a)

    Montrons que d divise d' et d' divise d. Alors d = d'

    d divise b et b+a (logique)
    Donc d divise a (car d divisera toute combinaison linéaire de b et b+a, donc (b+a)-b)
    Donc d divise et b et a.
    Donc d divise le pgcd de b et a, c'est-à-dire d' (attention, on a juste montré que d était un diviseur commun à b et a, pas que c'était le plus grand, d'où le fait qu'on affirme qu'il divise d' et non pas qu'il est égal)


    Ensuite,
    d' divise b et a
    Donc d' divise aussi b+a
    Donc d' divise b et b+a
    Donc d' divise le pgcd de b et b+a (idem que plus haut), c'est-à-dire d


    CQFD



    Edit : ah bon ?

  10. #9
    invited622d663

    Re : Incompréhension correction arithmétique.

    Merci beaucoup pour ta démonstration ! et merci bien pour votre aide précieuse.

Discussions similaires

  1. incompréhension !
    Par invite6c15c26a dans le forum Chimie
    Réponses: 7
    Dernier message: 12/09/2007, 15h32
  2. incomprehension, fonction factorielle
    Par invite049eca97 dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 08/11/2006, 12h50
  3. Glucocorticoïdes : incompréhension
    Par invite072b030b dans le forum Biologie
    Réponses: 2
    Dernier message: 27/05/2005, 12h02
  4. Incompréhension de symétrie en RR/RG
    Par invite7fb56a46 dans le forum Physique
    Réponses: 50
    Dernier message: 23/01/2005, 01h45