Bonjour à tous Voici une partie de mon dm de maths.
J'ai réussi le début 1.a) mais b) j'ai réussi a trouver la limite : j'ai trouvé 0 mais par contre je bloque à la question : En déduire que f est dérivable en 0 et déterminer f(0).
-----
26/12/2007, 18h28
#2
invite785b016a
Date d'inscription
janvier 1970
Messages
63
Re : Dérivée
up !! .
26/12/2007, 19h15
#3
invite1237a629
Date d'inscription
janvier 1970
Messages
4 568
Re : Dérivée
Salut,
1h pour un up... y a d'l'abus...
Regarde ce qu'on t'a demandé comme question : limite (1+u)e^-u quand u tend vers l'infini.
Un indice : quand x tend vers 0, 1/x tend vers... ?
Or, quand on demande si un nombre est dérivable en un point d'abscisse a, il faut voir si (f(x)-f(a))/(x-a) a une limite finie.
26/12/2007, 20h57
#4
invite785b016a
Date d'inscription
janvier 1970
Messages
63
Re : Dérivée
oui sa je suis daccord mais l'expression (1+u)e^-u ne coincide pas avec f
Aujourd'hui
A voir en vidéo sur Futura
26/12/2007, 21h02
#5
invite7ffe9b6a
Date d'inscription
janvier 1970
Messages
1 121
Re : Dérivée
Envoyé par Marcodu58
oui sa je suis daccord mais l'expression (1+u)e^-u ne coincide pas avec f
regarde ce que a dit MiMoiMolette, on peut poser u=.... et alors retouver la fonction de depart.
Apres lim u->inf .......=Lim x->......
26/12/2007, 21h27
#6
invite785b016a
Date d'inscription
janvier 1970
Messages
63
Re : Dérivée
justement c'est ce que je n'arrive pas a faire en posant u = 1/x je retrouve pas le fonction de départ.
26/12/2007, 22h31
#7
invite5e34a2b4
Date d'inscription
janvier 1970
Messages
287
Re : Dérivée
Salut,
Si on te demande de calculer la dérivée de f en 0, qu'est-ce que tu dois calculer ? Tu dois en revenir à la définition première de la dérivée, c'est-à-dire calculer la limite quand x tend vers 0 de ....
Je te laisse terminer la phrase.
Mets ça en forme, regarde quel changement de variables s'impose pour calculer cette dérivée et le tour est joué.
D'ailleurs, tu comprendras tout de suite pourquoi ils te demandent de calculer la limite en l'infini d'un truc qui est sorti de quasiment nulle part.
26/12/2007, 22h37
#8
invite785b016a
Date d'inscription
janvier 1970
Messages
63
Re : Dérivée
oué ben je vé essayé
26/12/2007, 22h43
#9
invite785b016a
Date d'inscription
janvier 1970
Messages
63
Re : Dérivée
Merci a vous j'ai trouvé
27/12/2007, 14h24
#10
invite785b016a
Date d'inscription
janvier 1970
Messages
63
Re : Dérivée
Voici un morceaux de la suite de l'exo ou je bloque encore a une question
Question 2) a) je suppose qu'il faut trouver un lien avec le dessus mais je ne le trouve pas .
27/12/2007, 17h44
#11
invite785b016a
Date d'inscription
janvier 1970
Messages
63
Re : Dérivée
up !
.
28/12/2007, 00h46
#12
invite5e34a2b4
Date d'inscription
janvier 1970
Messages
287
Re : Dérivée
Salut,
Je vois pas pourquoi tu cherches un lien avec la 1ère question, surtout que justement on a changé de question (et qu'on n'est qu'au début lol) .
On te demande le tableau de variation de g : donc tu calcules la dérivée etc.
Et le tableau de variations doit te permettre de trouver le signe de g.
C'est franchement pas compliqué (surtout par rapport à la 1ère question).
Ou sinon, dis où tu bloques !
28/12/2007, 20h40
#13
invite785b016a
Date d'inscription
janvier 1970
Messages
63
Re : Dérivée
Non c'est bon j'ai fait comme sa mais je pensais qu'il y avait un lien avec le début ^^. Merci