bonjour ~~ j'ai un petit probleme avec mon devoir de maths
Voici l'exercice : z est un nombre complexe et z' = 1 + z + z² + z^3 + z^4.
a) Vérifier que si z différent de 1 alors z' = (1-z^5) / (1-z).
Cette question j'ai répondu en utilisant la suite consécutif de la suite géométirque de raison z
b ) que vaut z' si z= e^i2pi/5 ? (j'ai remplace dans l'expression précedente)
En déduite la valeur de :
S = 1+ cos (2pi/5) + cos (4pi/5) + cos (6pi/5) + cos(8pi/5)
je ne sais pas quoi faire aider moi svp
tout ce que je sais c'est que ce S est un nombre réel ( puisque sinus est disparu).
Merci en avance de votre réponse pertinente et détalillé
-----