Problème d'arithmétique
Répondre à la discussion
Affichage des résultats 1 à 5 sur 5

Problème d'arithmétique



  1. #1
    invite1d9a0420

    Problème d'arithmétique


    ------

    Dans tout l’exercice on ne considère que des entiers naturels

    Bonjour à tous,
    Je suis en Terminale S spécialité Maths et j'ai un petit DM à faire qui me pause quelque soucis :

    1) Calculer le produit des diviseurs de 16 et le produit des diviseurs de 18.

    2) Si n est un entier non nul, on note P(n) le produit des diviseurs de n et Z(n) le nombre de diviseurs de n.

    a) Vérifier que pour n = 16 et n = 18 on a : nZ(n) = (P(n))2

    b) Démontrer dans le cas où la décomposition en facteurs premiers de n est n = pα qβ que ce résultat est général.

    c) Déterminer un entier sachant que le produit de ses 9 diviseurs est (225)4*15.

    3) Démonter que pour qu’un entier naturel soit un carré, il faut et il suffit qu’il ait un nombre impair de diviseurs.

    J' ai réussit à faire le 1 le 2a et 2c
    mais en ce qui concerne les deux démonstration (2b et 3) j'ai plus de mal.
    Pour le 2b j'ai essayé de trouver P(n) et Z(n) mais je n'arrive pas à démontrer l'égalité et donc la cas général. Un coup de pouce me rendrait bien service.
    Quant au 3, je ne sais pas par quoi commencer.

    En l'espérance de votre aide,
    Oversoul

    -----

  2. #2
    invite1d9a0420

    Re : Problème d'arithmétique

    salut à tous,
    un petit up parce que je n'y arrive vraiment pas

  3. #3
    invite1d9a0420

    Re : Problème d'arithmétique

    un peu d'aide siou plait...

  4. #4
    invite1d9a0420

    Re : Problème d'arithmétique

    En espérant un plus d’aide, je laisse mon raisonnement pour le 2b :

    Pour Z(n), le nombre de diviseur de n
    p0q0 ; p0q1 ; p0q2 ; … ; p0qβ ;
    p1q0 ; p1q1 ; p1q2 ; … ; p1qβ ;
    .
    .
    .
    p αq0 ; p αq1 ; p αq2 ; … ; p αqβ

    J’en déduis, dites moi si je me trompe, Z(n) = (α + 1)(β + 1)

    Par contre pour P(n) produit des diviseurs de n, je galère encore plus :
    p0q0 * p0q1 * p0q2 * … * p0qβ *
    p1q0 * p1q1 * p1q2 * … * p1qβ *
    .
    .
    .
    *pαq0 * pαq1 * pαq2 * … * pαqβ

    Suis-je sur la bonne voie ??

  5. A voir en vidéo sur Futura
  6. #5
    invite1d9a0420

    Re : Problème d'arithmétique

    un petit up
    ma bouteille à la mer n'a toujours pas atteint un rivage clément

Discussions similaires

  1. Problème d'arithmétique
    Par invitee75a2d43 dans le forum Mathématiques du supérieur
    Réponses: 20
    Dernier message: 07/03/2008, 12h33
  2. Problème d'arithmetique
    Par inviteedb947f2 dans le forum Mathématiques du supérieur
    Réponses: 15
    Dernier message: 15/06/2007, 11h30
  3. Problème d'arithmétique
    Par invitee17aeca5 dans le forum Mathématiques du collège et du lycée
    Réponses: 4
    Dernier message: 20/10/2006, 06h35
  4. probleme d'arithmetique, TS
    Par invite21126052 dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 24/02/2005, 22h17
  5. problème d'arithmétique.
    Par invitefffb8ef1 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 10/11/2004, 16h41