Répondre à la discussion
Affichage des résultats 1 à 23 sur 23

Problème factorielle raisonnement par recurrence



  1. #1
    h2terrorist

    Problème factorielle raisonnement par recurrence

    salut ,

    j'ai un DM a faire pour la rentree et j'ai un petit problème avec un exercice

    voila l'enoncé:

    démontrer que pour tout entier naturel n>=7 , n!>3^n

    j'ai essayé un raisonnement par recurrence mais je bloque a la partie hérédité pour démontrer que (n+1)!>3^(n+1)

    quelqu'un pourrait til me donner des pistes pour débloquer ma situation .

    -----


  2. Publicité
  3. #2
    Antho07

    Re : problème factorielle raisonnement par recurrence


  4. #3
    Arkangelsk

    Re : problème factorielle raisonnement par recurrence

    Salut,

    Comment fais-tu pour passer de à ?

  5. #4
    h2terrorist

    Re : problème factorielle raisonnement par recurrence

    dans l'hypothèse de recurrence il faut supposer que il existe n tel que n!>=3^n pour démontrer l'hérédité il faut démontrer que (n+1)!>=3^(n+1)

  6. #5
    h2terrorist

    Re : problème factorielle raisonnement par recurrence

    mais quand on multiplie les deux membres de l'inégalité n!>3^n par (n+1) on a

    (n+1)!>3^n*(n+1), et je suis bloqué

  7. A voir en vidéo sur Futura
  8. #6
    Antho07

    Re : problème factorielle raisonnement par recurrence

    oui et que peut ton dire de n+1 par rapport à 3?

  9. Publicité
  10. #7
    h2terrorist

    Re : problème factorielle raisonnement par recurrence

    n+1 est supérieur à 3 mais on fait comment pour introduire 3^(n+1)

  11. #8
    Antho07

    Re : problème factorielle raisonnement par recurrence

    Citation Envoyé par h2terrorist Voir le message
    n+1 est supérieur à 3 mais on fait comment pour introduire 3^(n+1)

  12. #9
    Arkangelsk

    Re : problème factorielle raisonnement par recurrence

    = x

    Je te laisse conclure.

  13. #10
    h2terrorist

    Re : problème factorielle raisonnement par recurrence

    oui mais si on multiplie les deux membres de l'inegalité par 3, on a

    3(n+1)!>3^n*3(n+1) <=> 3(n+1)!>3^n+1 (n+1) et ca bloque

  14. #11
    Arkangelsk

    Re : problème factorielle raisonnement par recurrence

    On ne multiplie pas les 2 membres de l'inégalité par !

  15. #12
    h2terrorist

    Re : problème factorielle raisonnement par recurrence

    comment on fait alors pour obtenir 3^(n+1)

  16. Publicité
  17. #13
    Arkangelsk

    Re : problème factorielle raisonnement par recurrence

    Eh bien, on majore , mais on n'obtient pas !

  18. #14
    h2terrorist

    Re : problème factorielle raisonnement par recurrence

    comment le majorer

  19. #15
    Arkangelsk

    Re : Problème factorielle raisonnement par recurrence

    Citation Envoyé par h2terrorist Voir le message
    comment le majorer
    Un conseil : relis un peu et réfléchis, au lieu de poster sans réfléchir ! Tu as tous les éléments.

  20. #16
    Antho07

    Re : Problème factorielle raisonnement par recurrence

    Bien que majorer quelque chose ne soit pas courant dans les raisonnements de terminal.
    On verifira facilement que si a est positif ou de maniere general si ,

  21. #17
    h2terrorist

    Re : Problème factorielle raisonnement par recurrence

    je n'y arrive vraiment pas

  22. #18
    Antho07

    Re : problème factorielle raisonnement par recurrence

    On a



    or

    d'ou



    mais nous on veut



    or tu as dit à juste raison que

    T'y vois plus clair?


    Ce qu'on voudrait pouvoir ecrire c'est que

    Dernière modification par Antho07 ; 26/10/2008 à 12h28.

  23. Publicité
  24. #19
    h2terrorist

    Re : problème factorielle raisonnement par recurrence

    oui je comprend mieux

  25. #20
    h2terrorist

    Re : problème factorielle raisonnement par recurrence

    mais non au fait je trouve toujours rien puisque

    (n+1)x3^n>= 3^n <=> 3^(n+1)x(n+1)>= 3^(n+1)

  26. #21
    h2terrorist

    Re : problème factorielle raisonnement par recurrence

    alors que dans l'autre inegalité ya pas 3^(n+1)x(n+1)

  27. #22
    h2terrorist

    Re : problème factorielle raisonnement par recurrence

    à moins que comme n>=7 (dans l'enoncé), (n+1)>3 <=> (n+1)x3^n>3x3^n

    donc (n+1)x3^n> 3(n+1)

    c parait logique??

  28. #23
    Antho07

    Re : problème factorielle raisonnement par recurrence

    (n+1)>3

    =>

    (n+1)* 3^n > 3*3^n

    et c'est fini

Sur le même thème :

Discussions similaires

  1. raisonnement par récurrence
    Par tio283 dans le forum Mathématiques du collège et du lycée
    Réponses: 3
    Dernier message: 21/09/2008, 16h07
  2. Raisonnement par récurrence
    Par Princess75 dans le forum Mathématiques du collège et du lycée
    Réponses: 3
    Dernier message: 12/09/2008, 22h03
  3. Raisonnement par récurrence
    Par dinou dans le forum Mathématiques du collège et du lycée
    Réponses: 3
    Dernier message: 18/09/2007, 09h04
  4. Le raisonnement par récurrence.
    Par Electrofred dans le forum Mathématiques du collège et du lycée
    Réponses: 9
    Dernier message: 23/02/2007, 06h27
  5. — Raisonnement par récurrence
    Par Naoli dans le forum Mathématiques du supérieur
    Réponses: 15
    Dernier message: 24/01/2004, 11h28