Asymptotes obliques
Répondre à la discussion
Affichage des résultats 1 à 7 sur 7

Asymptotes obliques



  1. #1
    invite2f6def43

    Post Asymptotes obliques


    ------

    Bonsoir.
    Je suis en T°S, et j'ai un petit probleme, concernant un exercice :

    Nous avons f(x)= racine(4x²-4x+3)

    On nous demande d'écrire sous forme canonique 4x²-4x+3 ( OK )

    On nous demande ensuite d'etudier la limite en +infini et -infini de la fonction :
    h(x)=f(x)-racine[(2x+1)²]

    Je trouve 0+ dans les deux cas, ce qui me semble juste, car cela apparait sur la courbe affichée par ma calculatrice.

    Je bloque néanmoins a la question suivante, qui est :
    En deduire que la courbe représentant f(x) admet deux asymptotes obliques dont vous donnerez les equations.

    Nous avons demontré que la limite en +infini et -infini est egale a 0, donc on peut dire que la courbe d'equation y=racine[(2x+1)²] est une asymptote oblique a f(x).
    Mais je ne voit pas comment trouver une deuxieme asymptote... est-ce en rapport avec la forme canonique qu'on nous a demander d'établir precedement ?

    Merci

    -----

  2. #2
    invite7bfc68ef

    Re : asymptotes obliques

    Citation Envoyé par mokha Voir le message
    Bonsoir.
    Je suis en T°S, et j'ai un petit probleme, concernant un exercice :

    Nous avons f(x)= racine(4x²-4x+3)

    On nous demande d'écrire sous forme canonique 4x²-4x+3 ( OK )

    On nous demande ensuite d'etudier la limite en +infini et -infini de la fonction :
    h(x)=f(x)-racine[(2x+1)²]

    Je trouve 0+ dans les deux cas, ce qui me semble juste, car cela apparait sur la courbe affichée par ma calculatrice.

    Je bloque néanmoins a la question suivante, qui est :
    En deduire que la courbe représentant f(x) admet deux asymptotes obliques dont vous donnerez les equations.

    Nous avons demontré que la limite en +infini et -infini est egale a 0, donc on peut dire que la courbe d'equation y=racine[(2x+1)²] est une asymptote oblique a f(x).
    Mais je ne voit pas comment trouver une deuxieme asymptote... est-ce en rapport avec la forme canonique qu'on nous a demander d'établir precedement ?

    Merci
    bonsoir il y a bien 2 asymptotes obliques ; pour trouver leur équation, calcule l'équation des 2 tangeantes en 20 et -20 ; dérive f(x) c'est assez simple slt

  3. #3
    invite890931c6

    Re : asymptotes obliques

    bonsoir je pense que comme tu as , et comme tu a trouvé 0 aux limites tu peux dire que ou sont asymptotes obliques à .

    N'oublie pas que ou

  4. #4
    invite2f6def43

    Re : asymptotes obliques

    Citation Envoyé par portoline Voir le message
    bonsoir il y a bien 2 asymptotes obliques ; pour trouver leur équation, calcule l'équation des 2 tangeantes en 20 et -20 ; dérive f(x) c'est assez simple slt
    Lol, je trouve que ça peut etre une bonne idée, mais je deteste calculer tout ce qui est tangentes . Je sais que sa peut paraître bête de ma part, mais bon. ( oui je suis un peu flemmard )

    Je me tourne plutôt apres ce que dit VegeTal . En effet, car j'ai deja pensé a cette idée, mais je n'était pas sur de moi.
    Mais dire que la limite de f(x) quand x tend vers -infini egal a 0, et de meme quand x tend vers +infini suffit-il pour dire que les droites d'equations (2x+1) et -(2x+1) sont asymptotes a la courbe représentant f(x) ?

  5. A voir en vidéo sur Futura
  6. #5
    invite02e16773

    Re : asymptotes obliques

    Bonsoir,

    Par sûr que cela suffise, il vaut mieux détailler sur la valeur absolue. Les valeurs absolues sont généralement un gros piège dans lequel tout le monde tombe (même post-bac), on t'attend donc particulièrement là dessus et il faut détailler le cas x <0 (celui qui pose problème) pour avoir les points.
    La droite d'équation est asymptote à en
    Or, comme l'a fait remarqué Vegetal, pour x <0. donc la droite d'équation est asymptote.

  7. #6
    invite890931c6

    Re : asymptotes obliques

    si tu a quelque chose du style



    alors oui tu peux conclure qu'il y a une asymptote oblique.

  8. #7
    invite2f6def43

    Re : asymptotes obliques

    Citation Envoyé par Guillaume69 Voir le message
    Bonsoir,

    Par sûr que cela suffise, il vaut mieux détailler sur la valeur absolue. Les valeurs absolues sont généralement un gros piège dans lequel tout le monde tombe (même post-bac), on t'attend donc particulièrement là dessus et il faut détailler le cas x <0 (celui qui pose problème) pour avoir les points.
    La droite d'équation est asymptote à en
    Or, comme l'a fait remarqué Vegetal, pour x <0. donc la droite d'équation est asymptote.
    Citation Envoyé par VegeTal Voir le message
    si tu a quelque chose du style



    alors oui tu peux conclure qu'il y a une asymptote oblique.
    Merci a vous deux ! Je comprend mieu l'interet de la question, qui en y faisant attention reposait en effet sur le "piege" de la valeur absolue.

    ( Bonne nuit )

Discussions similaires

  1. Asymptotes
    Par invite903a1e63 dans le forum Mathématiques du collège et du lycée
    Réponses: 8
    Dernier message: 21/09/2008, 16h32
  2. DM asymptotes
    Par invitece31e6b4 dans le forum Mathématiques du collège et du lycée
    Réponses: 16
    Dernier message: 12/02/2008, 08h28
  3. Asymptotes et DL
    Par inviteb150b6f0 dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 25/11/2007, 02h49
  4. Problème d'asymptotes obliques [limite]
    Par invite8b5bb14e dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 08/09/2007, 23h03
  5. Asymptotes!!
    Par inviteb6801900 dans le forum Mathématiques du collège et du lycée
    Réponses: 10
    Dernier message: 11/03/2007, 17h47