[3eme] résolution equation
Répondre à la discussion
Affichage des résultats 1 à 8 sur 8

[3eme] résolution equation



  1. #1
    invite330103f1

    [3eme] résolution equation


    ------

    Bonsoir,

    Je suis en train de terminer mon devoir maison, mais je rester bloqué sur quelques résolutions qui sont écrites sous forme de quotient et dont le résultat est zéro...

    J'ai par exemple :

    3/(x-1) - 2/(x+1) = 0

    Donc là, j'ai vu l'identité remarquable et j'ai fais en sortes que les deux membres aient le même dénominateur, mais je ne sais pas trop comment procéder
    [3 (x+1) / (x-1) (x+1)] - [2 (x-1)/(x+1)(x-1)] = 0

    -----

  2. #2
    invite95f8214e

    Re : [3eme] résolution equation

    [3 (x+1) / (x-1) (x+1)] - [2 (x-1)/(x+1)(x-1)] = 0
    ça me parai logique

  3. #3
    invite1a2d3d68

    Re : [3eme] résolution equation

    3/(x-1) - 2/(x+1) = 0

    Valeurs interdites : x-1 et x+1
    donc deuc valeurs interdites qui sont 1 et -1

    3(x+1) / (x-1)(x+1) - 2(x-1) / (x-1)(x+1) = 0

    3(x+1)-2(x-1) / (x-1)(x+1) = 0

    3x + 1 - 2x + 2 / (x-1)(x+1) = 0

    x + 3 / (x-1)(x+1) = 0

    équivaut à : x+3 = 0 ou x=-3

    donc S={-3}

  4. #4
    invite7d436771

    Re : [3eme] résolution equation

    Bonsoir,

    Effectivement tu peux réduire au même dénominateur, et éventuellement utiliser une identité remarquable. Tu utilise alors le fait qu'une fraction est nulle si le numérateur est nul (ce que tu peux retrouver en multipliant chaque membre par le dénominateur et utiliser le fait que 0*n'importe quoi =0).

    Cordialement,

    Nox

  5. A voir en vidéo sur Futura
  6. #5
    invite7d436771

    Re : [3eme] résolution equation

    Bonsoir,

    Effectivement tu peux réduire au même dénominateur, et éventuellement utiliser une identité remarquable. Tu utilise alors le fait qu'une fraction est nulle si le numérateur est nul (ce que tu peux retrouver en multipliant chaque membre par le dénominateur et utiliser le fait que 0*n'importe quoi =0).

    Cordialement,

    Nox

  7. #6
    invite7d436771

    Re : [3eme] résolution equation

    Bonsoir,

    Citation Envoyé par nachou Voir le message


    3(x+1)-2(x-1) / (x-1)(x+1) = 0

    3x + 1 - 2x + 2 / (x-1)(x+1) = 0
    Problème : 3*1=1 dans ton développement (ce qui ne donne pas le même résultat du coup)

    Cordialement,

    Nox

  8. #7
    invite330103f1

    Re : [3eme] résolution equation

    Je vous remercie, vous m'avez bien aidé ; ça me piquait le nez de ne pas trouver

  9. #8
    invite1a2d3d68

    Re : [3eme] résolution equation

    3/(x-1) - 2/(x+1) = 0

    rectification

    Valeurs interdites : x-1 et x+1
    donc deuc valeurs interdites qui sont 1 et -1

    3(x+1) / (x-1)(x+1) - 2(x-1) / (x-1)(x+1) = 0

    3(x+1)-2(x-1) / (x-1)(x+1) = 0

    3x + 3 - 2x + 2 / (x-1)(x+1) = 0

    x + 5 / (x-1)(x+1) = 0

    équivaut à : x+5 = 0 ou x=-5

    donc S={-5}
    voilà et autant pour moi

    Cordialement

Discussions similaires

  1. Résolution d'équation du 3ème degré
    Par invitea7fcfc37 dans le forum Mathématiques du supérieur
    Réponses: 19
    Dernier message: 30/07/2010, 16h10
  2. Équation [3ème]
    Par invite20bf9d9c dans le forum Mathématiques du collège et du lycée
    Réponses: 6
    Dernier message: 23/02/2008, 20h24
  3. equation 3ème
    Par invite1f85dcb7 dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 06/10/2007, 14h29
  4. probleme:resolution d'equation du 3eme
    Par invitefb8062d9 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 08/09/2006, 19h54
  5. Résolution des polynomes de 3ème degré
    Par inviteeecca5b6 dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 19/12/2004, 16h02