suite 1ere s Dm
Répondre à la discussion
Affichage des résultats 1 à 7 sur 7

suite 1ere s Dm



  1. #1
    invitec3d2af16

    suite 1ere s Dm


    ------

    Bonjour tout le monde, j'ai un petit souci avec un dm de math voici l'énoncé:
    on définit deux suites (an) et (bn) par a=o et b=1 puis pour n superieur ou égale a 0.

    A indice n+1=(3an+bn)/4
    B indice n+1=(an+3bn)/4
    Sn=an+bn
    Dn=bn-an

    1)montrer que sn est constante
    2)montrer que dn suite geometrique de raison 1/2
    3)exprimer an et bn en fonction de Sn et Dn puis en fonction de n



    Merci à ceux qui pourront m'aider



    ps:question 1) et 2) faite mais j'ai un probleme pour la 3)

    j'ai trouvé an=(Sn-Dn)/4
    bn=(Dn+Sn)/4

    par contre j'ai pas trouver en fonction de n

    -----

  2. #2
    inviteec9de84d

    Re : suite 1ere s Dm

    Salut,
    Sn constante : en particulier, que vaut S0 ? déduis-en Sn.
    Dn géométrique : comment s'écrit le terme général d'une suite géométrique en fonction de n ?

  3. #3
    invitec3d2af16

    Re : suite 1ere s Dm

    j'ai deja prouvé que sn est constante en montrant que sn+1 -sn =0
    et que dn geometrique en exprimant dn+1 en fonction de dn
    moi mon probleme c'est la question 3

  4. #4
    inviteec9de84d

    Re : suite 1ere s Dm

    Citation Envoyé par vribose Voir le message
    j'ai deja prouvé que sn est constante en montrant que sn+1 -sn =0
    et que dn geometrique en exprimant dn+1 en fonction de dn
    moi mon probleme c'est la question 3
    Je sais : que vaut Sn alors ! (en particulier S0, puisqu'elle est constante).
    Et qu'elle est l'expression du terme général d'une suite géométrique ?

  5. A voir en vidéo sur Futura
  6. #5
    invitec3d2af16

    Re : suite 1ere s Dm

    S0=1
    et dn=(1/2)^n

  7. #6
    inviteec9de84d

    Re : suite 1ere s Dm

    Ok pour Dn, que vaut Sn alors ? Tu peux conclure pour an et bn.

  8. #7
    invitec3d2af16

    Re : suite 1ere s Dm

    je vois pas du tout pour sn peut etre sn+1=sn

Discussions similaires

  1. Problème de suite 1ere S
    Par invite174921ea dans le forum Mathématiques du collège et du lycée
    Réponses: 6
    Dernier message: 17/05/2009, 13h57
  2. suite geometrique 1ere s
    Par invitec3d2af16 dans le forum Mathématiques du collège et du lycée
    Réponses: 7
    Dernier message: 15/03/2009, 14h05
  3. suite arithmétique 1ere s
    Par invitec3d2af16 dans le forum Mathématiques du collège et du lycée
    Réponses: 2
    Dernier message: 11/03/2009, 19h33
  4. egalité de suite (2 façons d'exprimer la même suite)[1ere S]
    Par invite7534a64a dans le forum Mathématiques du collège et du lycée
    Réponses: 8
    Dernier message: 21/05/2006, 10h13
  5. suite [1ere S]
    Par invite7534a64a dans le forum Mathématiques du collège et du lycée
    Réponses: 7
    Dernier message: 02/03/2006, 20h52